Bubble-and-bust dynamics under walrasian asset pricing and heterogeneous traders

Giovanni Dosi†

Jacopo Staccioli†

† Scuola Superiore Sant’Anna, Pisa

20th Annual Workshop on the Economic Science with Heterogeneous Interacting Agents

Sophia Antipolis, May 22nd, 2015
Outline

1. Context and proposal
2. Methodological perspective
3. The model
4. Simulation and results
5. Concluding remarks and conceivable extension
Outline

1 Context and proposal

2 Methodological perspective

3 The model

4 Simulation and results

5 Concluding remarks and conceivable extension
1. Context and proposal
2. Methodological perspective
3. The model
4. Simulation and results
5. Concluding remarks and conceivable extension
Outline

1 Context and proposal

2 Methodological perspective

3 The model

4 Simulation and results

5 Concluding remarks and conceivable extension
Outline

1. Context and proposal
2. Methodological perspective
3. The model
4. Simulation and results
5. Concluding remarks and conceivable extension
Financial bubbles

Source: NASDAQ OMX Group
Shaded areas indicate US recessions - 2014 research.stlouisfed.org
“if the reason that the price is high today is only because investors believe that the selling price will be high tomorrow – when ‘fundamental’ factors do not seem to justify such a price – then a bubble exists” [Stiglitz, 1990]

“a sharp rise in the price of an asset or a range of assets in a continuous process, with the initial rise generating expectations of further rises and attracting new buyers – generally speculators interested in profits from trading in the asset rather than its use or earnings capacity” [Kindleberger, 1978]
“if the reason that the price is high today is only because investors believe that the selling price will be high tomorrow – when ‘fundamental’ factors do not seem to justify such a price – then a bubble exists”
[Stiglitz, 1990]

“a sharp rise in the price of an asset or a range of assets in a continuous process, with the initial rise generating expectations of further rises and attracting new buyers – generally speculators interested in profits from trading in the asset rather than its use or earnings capacity”
[Kindleberger, 1978]
Our proposal

We set up a model able to yield:

- *endogenous* bubble-and-bust dynamics
- as a result of the sole interaction among *heterogeneous adaptive traders*
- highlighting booms and crashes as intrinsic features of financial markets
Outline

1 Context and proposal

2 Methodological perspective

3 The model

4 Simulation and results

5 Concluding remarks and conceivable extension
Methodological perspective

Heterogeneous Agents Models

- analytical investigations of the dynamical systems representing the laws of motion of the economy
- analytical tractability often leads to simplifying assumptions
- focus on asymptotic properties

Agent-Based Models

- computational (numerical) study of economies modelled as evolving systems of interacting agents
- complex behaviour specifications
- keep track of the whole dynamics
Methodological perspective

Heterogeneous Agents Models
- analytical investigations of the dynamical systems representing the laws of motion of the economy
- analytical tractability often leads to simplifying assumptions
- focus on asymptotic properties

Agent-Based Models
- computational (numerical) study of economies modelled as evolving systems of interacting agents
- complex behaviour specifications
- keep track of the whole dynamics
Consider a pure-exchange economy:

- N heterogeneous traders (index $\mathcal{N} = \{1, \ldots, n, \ldots, N\}$);
- L long-lived risky securities (index $\mathcal{L} = \{1, \ldots, \ell, \ldots, L\}$);
- a riskless bond;
- time is discrete (index $t \in \mathcal{T}$);
- risky securities, present in fixed amount, have ex-dividend price p_{t}^{ℓ} and pay random dividend d_{t}^{ℓ} at the end of each period;
- the bond, inelastically supplied, has price normalized to 1 (numéraire) and yields $r_{f} > 0$ in every t;
- trader wealth $W_{n,t}$ equals the market value of the portfolio he holds;
- fundamentals are proxied by the dividend yield $e_{t}^{\ell} = \frac{d_{t}^{\ell}}{p_{t-1}^{\ell}}$, $\forall \ell \in \mathcal{L}$.
The model

Consider a pure-exchange economy:

- \(N \) heterogeneous traders (index \(\mathcal{N} = \{1, \ldots, n, \ldots, N\} \));
- \(L \) long-lived risky securities (index \(\mathcal{L} = \{1, \ldots, \ell, \ldots, L\} \));
- a riskless bond;
- time is discrete (index \(t \in \mathcal{T} \));
- risky securities, present in fixed amount, have ex-dividend price \(p^\ell_t \) and pay random dividend \(d^\ell_t \) at the end of each period;
- the bond, inelastically supplied, has price normalized to 1 (numéraire) and yields \(r_f > 0 \) in every \(t \);
- trader wealth \(W_{n,t} \) equals the market value of the portfolio he holds;
- fundamentals are proxied by the dividend yield \(e^\ell_t = \frac{d^\ell_t}{p^\ell_{t-1}} \), \(\forall \ell \in \mathcal{L} \).
Consider a pure-exchange economy:

- N heterogeneous traders (index $\mathcal{N} = \{1, \ldots, n, \ldots, N\}$);
- L long-lived risky securities (index $\mathcal{L} = \{1, \ldots, \ell, \ldots, L\}$);
- a riskless bond;
- time is discrete (index $t \in \mathcal{T}$);
- risky securities, present in fixed amount, have ex-dividend price p^ℓ_t and pay random dividend d^ℓ_t at the end of each period;
- the bond, inelastically supplied, has price normalized to 1 (numéraire) and yields $r_f > 0$ in every t;
- trader wealth W^t_n equals the market value of the portfolio he holds;
- fundamentals are proxied by the dividend yield $e^\ell_t = \frac{d^\ell_t}{p^\ell_{t-1}}$, $\forall \ell \in \mathcal{L}$.
The model

Consider a pure-exchange economy:

- N heterogeneous traders (index $\mathcal{N} = \{1, \ldots, n, \ldots, N\}$);
- L long-lived risky securities (index $\mathcal{L} = \{1, \ldots, \ell, \ldots, L\}$);
- a riskless bond;
- time is discrete (index $t \in \mathcal{T}$);

- risky securities, present in fixed amount, have ex-dividend price p_t^ℓ and pay random dividend d_t^ℓ at the end of each period;
- the bond, inelastically supplied, has price normalized to 1 (numéraire) and yields $r_f > 0$ in every t;
- trader wealth $W_{n,t}$ equals the market value of the portfolio he holds;
- fundamentals are proxied by the dividend yield $e_t^\ell = \frac{d_t^\ell}{p_{t-1}^\ell}$, $\forall \ell \in \mathcal{L}$.
Consider a pure-exchange economy:

- N heterogeneous traders (index $\mathcal{N} = \{1, \ldots, n, \ldots, N\}$);
- L long-lived risky securities (index $\mathcal{L} = \{1, \ldots, \ell, \ldots, L\}$);
- a riskless bond;
- time is discrete (index $t \in \mathcal{T}$);
- risky securities, present in fixed amount, have ex-dividend price p^ℓ_t and pay random dividend d^ℓ_t at the end of each period;
- the bond, inelastically supplied, has price normalized to 1 (numéraire) and yields $r_f > 0$ in every t;
- trader wealth $W_{n,t}$ equals the market value of the portfolio he holds;
- fundamentals are proxied by the dividend yield $e^\ell_t = \frac{d^\ell_t}{p^\ell_{t-1}}$, $\forall \ell \in \mathcal{L}$.

G. Dosi, J. Staccioli
Bubble dynamics under walrasian asset pricing and heterogeneous traders
Fri, May 22nd, 2015 9 / 35
Consider a pure-exchange economy:

- N heterogeneous traders (index $\mathcal{N} = \{1, \ldots, n, \ldots, N\}$);
- L long-lived risky securities (index $\mathcal{L} = \{1, \ldots, \ell, \ldots, L\}$);
- a riskless bond;
- time is discrete (index $t \in \mathcal{T}$);
- risky securities, present in fixed amount, have ex-dividend price p^{ℓ}_t and pay random dividend d^{ℓ}_t at the end of each period;
- the bond, inelastically supplied, has price normalized to 1 (numéraire) and yields $r_f > 0$ in every t;
- trader wealth $W_{n,t}$ equals the market value of the portfolio he holds;
- fundamentals are proxied by the dividend yield $e^{\ell}_t = \frac{d^{\ell}_t}{p^{\ell}_{t-1}}$, $\forall \ell \in \mathcal{L}$.

G. Dosi, J. Staccioli
Bubble dynamics under walrasian asset pricing and heterogeneous traders

Fri, May 22nd, 2015 9 / 35
Consider a pure-exchange economy:

- N heterogeneous traders (index $\mathcal{N} = \{1, \ldots, n, \ldots, N\}$);
- L long-lived risky securities (index $\mathcal{L} = \{1, \ldots, \ell, \ldots, L\}$);
- a riskless bond;
- time is discrete (index $t \in \mathcal{T}$);
- risky securities, present in fixed amount, have ex-dividend price p_t^ℓ and pay random dividend d_t^ℓ at the end of each period;
- the bond, inelastically supplied, has price normalized to 1 (numéraire) and yields $r_f > 0$ in every t;
- trader wealth $W_{n,t}$ equals the market value of the portfolio he holds;
- fundamentals are proxied by the dividend yield $e_t^\ell = \frac{d_t^\ell}{p_{t-1}^\ell}, \forall \ell \in \mathcal{L}$.
The model

Consider a pure-exchange economy:

- N heterogeneous traders (index $\mathcal{N} = \{1, \ldots, n, \ldots, N\}$);
- L long-lived risky securities (index $\mathcal{L} = \{1, \ldots, \ell, \ldots, L\}$);
- a riskless bond;
- time is discrete (index $t \in \mathcal{T}$);
- risky securities, present in fixed amount, have ex-dividend price p^ℓ_t and pay random dividend d^ℓ_t at the end of each period;
- the bond, inelastically supplied, has price normalized to 1 (numéraire) and yields $r_f > 0$ in every t;
- trader wealth $W_{n,t}$ equals the market value of the portfolio he holds;
- fundamentals are proxied by the dividend yield $e^\ell_t = \frac{d^\ell_t}{p^\ell_{t-1}}$, $\forall \ell \in \mathcal{L}$.
Trader behaviour

At the beginning of each time step, trader \(n \) invests a share \(x_{n,t}^{\ell} \) of his wealth in security \(\ell \); the decision is made according to the information set

\[
\mathcal{I}_t = \{ p_1^T, \ldots, p_L^T; d_1^T, \ldots, d_L^T \mid \tau < t \}
\]

that is common knowledge, and to trader-specific investment function

\[
f_n : \mathbb{R}^{T \times L} \rightarrow \mathbb{R}^L \quad \text{such that} \quad x_{n,t} = f_{n,t}(\mathcal{I}_t)
\]

that is independent on wealth, coherent with CRRA attitude.

At every time step, each trader faces an optimisation problem of the form:

\[
\max_{x_{n,t}} \mathbb{E} \left[\frac{W_{n,t}^{1-\gamma_n} - 1}{1 - \gamma_n} \right]
\]

s.t.

\[
W_{n,t} = W_{n,t-1} \cdot \left[x_{n,t-1}^0 \cdot (1 + r_f) + \sum_{\ell=1}^L x_{n,t-1}^{\ell} \cdot \left(\frac{p_{t}^{\ell}}{p_{t-1}^{\ell}} + e_{t}^{\ell} \right) \right]
\]

where \(\gamma_n > 0 \) denotes the risk-aversion coefficient.
Trader behaviour

At the beginning of each time step, trader n invests a share $x_{n,t}^\ell$ of his wealth in security ℓ; the decision is made according to the information set

$$\mathcal{I}_t = \{p_1^\tau, \ldots, p_L^\tau; \ d_1^\tau, \ldots, d_L^\tau \mid \tau < t\}$$

that is common knowledge, and to trader-specific investment function

$$f_n : \mathbb{R}^{\tau \times L} \rightarrow \mathbb{R}^L \text{ such that } x_{n,t} = f_{n,t}(\mathcal{I}_t)$$

that is independent on wealth, coherent with CRRA attitude.

At every time step, each trader faces an optimisation problem of the form:

$$\max_{x_{n,t}} \mathbb{E} \left[\frac{W_{n,t}^{1-\gamma_n} - 1}{1 - \gamma_n} \right]$$

s.t.

$$W_{n,t} = W_{n,t-1} \cdot \left[x_{n,t-1}^0 \cdot (1 + r_f) + \sum_{\ell=1}^L x_{n,t-1}^\ell \cdot \left(\frac{p_\ell^t}{p_\ell^{t-1}} + e_\ell^t \right) \right]$$

where $\gamma_n > 0$ denotes the risk-aversion coefficient.
Trader behaviour

At the beginning of each time step, trader n invests a share $x_{n,t}^\ell$ of his wealth in security ℓ; the decision is made according to the information set

$$\mathcal{I}_t = \{p_1^\tau, \ldots, p_L^\tau; \ d_1^\tau, \ldots, d_L^\tau \mid \tau < t\}$$

that is common knowledge, and to trader-specific investment function

$$f_n : \mathbb{R}^{\tau \times L} \rightarrow \mathbb{R}^L \text{ such that } x_{n,t} = f_{n,t}(\mathcal{I}_t)$$

that is independent on wealth, coherent with CRRA attitude.

At every time step, each trader faces an optimisation problem of the form:

$$\max_{x_{n,t}} \mathbb{E} \left[\frac{W_{n,t}^{1-\gamma_n} - 1}{1 - \gamma_n} \right]$$

s.t.

$$W_{n,t} = W_{n,t-1} \cdot \left[x_{n,t-1}^0 \cdot (1 + r_f) + \sum_{\ell=1}^L x_{n,t-1}^\ell \cdot \left(\frac{p_\ell^t}{p_{\ell,t-1}^t} + e_\ell^t \right) \right]$$

where $\gamma_n > 0$ denotes the risk-aversion coefficient.
Trader expectations

We assume the trader forms expectations about future price returns and their (co)variances by means of EWMA predictors over the information set previously defined:

\[
\hat{\rho}_{\ell,n,t} = \lambda_n \cdot \sum_{\tau=0}^{\infty} (1 - \lambda_n)^\tau \cdot \rho_{t-\tau-1}^\ell
\]

\[
\hat{\sigma}_{\rho,\ell,n,t} = \lambda_n \cdot \sum_{\tau=0}^{\infty} (1 - \lambda_n)^\tau \cdot \left[\rho_{t-\tau-1}^\ell - \hat{\rho}_{n,t-\tau-1}^\ell \right] \cdot \left[\rho_{t-\tau-1}^h - \hat{\rho}_{n,t-\tau-1}^h \right]
\]

where \(\rho_t^\ell = \frac{p_t^\ell}{p_{t-1}^\ell} - 1 \) is the price return of security \(\ell \) between \(t - 1 \) and \(t \).

The memory decay factor \(\lambda_n \in (0, 1) \) captures the way relative weights are distributed across more recent and older observations.
Trader investment function

We adopt the same mean-variance approximation of the optimal investment function proposed in Chiarella and He (2001):

\[
x_{n,t} = \frac{1}{\gamma_n} \cdot \mathbb{C}_{n,t}^{-1} \cdot \left[\mathbb{E}_{n,t} - r_f \cdot 1 \right]
\]

where \(\mathbb{E}_{n,t} \) and \(\mathbb{C}_{n,t} \) are, respectively, the vector of expected total returns and the expected variance-covariance matrix and \(d_n \) is a behavioural parameter:

- \(d_n = 0 \) trader \(n \) is a fundamentalist
- \(d_n > 0 \) trader \(n \) is a trend-chaser
- \(d_n < 0 \) trader \(n \) is a trend-contrarian

Assumption

\(e^\ell_t \) is drawn at each time step from a \(L \)-dimensional known probability distribution with mean \(\bar{e} \) and covariance matrix \(\Sigma \).
Trader investment function

We adopt the same mean-variance approximation of the optimal investment function proposed in Chiarella and He (2001):

\[
x_{n,t} = \frac{1}{\gamma_n} \cdot C_{n,t}^{-1} \cdot \left[E_{n,t} - r_f \cdot 1 \right]
\]

\[
E_{n,t}^\ell = \bar{e}^\ell + d_n \cdot \hat{\rho}_{n,t}^\ell
\]

\[
C_{n,t}^\ell,h = \hat{\sigma}_{\rho,n,t}^\ell,h + \sigma_{\ell,e}^h
\]

where \(E_{n,t} \) and \(C_{n,t} \) are, respectively, the vector of expected total returns and the expected variance-covariance matrix and \(d_n \) is a behavioural parameter:

- \(d_n = 0 \) trader \(n \) is a fundamentalist
- \(d_n > 0 \) trader \(n \) is a trend-chaser
- \(d_n < 0 \) trader \(n \) is a trend-contrarian

Assumption

\(e_t^\ell \) is drown at each time step from a \(L \)-dimensional known probability distribution with mean \(\bar{e} \) and covariance matrix \(\Sigma \).
Trader investment function

We adopt the same mean-variance approximation of the optimal investment function proposed in Chiarella and He (2001):

\[x_{n,t} = \frac{1}{\gamma_n} \cdot C_{n,t}^{-1} \cdot \left[E_{n,t} - r_f \cdot 1 \right] \]

\[E_{n,t}^{\ell} = \bar{e}^{\ell} + d_n \cdot \hat{\rho}_{n,t}^{\ell} \]

\[C_{n,t}^{\ell,h} = \hat{\sigma}_{\rho,n,t}^{\ell,h} + \sigma_{e}^{\ell,h} \]

where \(E_{n,t} \) and \(C_{n,t} \) are, respectively, the vector of expected total returns and the expected variance-covariance matrix and \(d_n \) is a behavioural parameter:

- \(d_n = 0 \) trader \(n \) is a fundamentalist
- \(d_n > 0 \) trader \(n \) is a trend-chaser
- \(d_n < 0 \) trader \(n \) is a trend-contrarian

Assumption

\(e_t^{\ell} \) is drawn at each time step from a \(L \)-dimensional known probability distribution with mean \(\bar{e} \) and covariance matrix \(\Sigma \).
Proposition

If short positions are not allowed, i.e.

\[x_{n,t}^\ell \in (0, 1) \quad \forall n \in N, \forall \ell \in \mathcal{L}, \forall t \in \mathcal{T} \]

then prevailing prices exist, are unique and strictly positive. It holds:

\[
p_t^\ell = p_{t-1}^\ell \cdot \frac{x_t^\ell}{x_{t-1}^\ell} \cdot \frac{x_{t-1}^0}{x_t^0} \cdot (1 + r_f) + \sum_{\ell=1}^L x_{t-1}^\ell \cdot e_t^\ell
\]

Assumption

No trader can take short position in any asset, i.e. the image of traders’ investment functions is restricted such that

\[f_n : \mathbb{R}^{\tau \times L} \rightarrow \text{Int} \left(\Delta^L \right) \]
Pricing of risky assets

Proposition

If short positions are not allowed, i.e.

\[x_{n,t}^\ell \in (0, 1) \quad \forall n \in N, \forall \ell \in L, \forall t \in T \]

then prevailing prices exist, are unique and strictly positive. It holds:

\[
p_t^\ell = p_{t-1}^\ell \cdot \frac{x_t^\ell}{x_{t-1}^\ell} \cdot x_{t-1}^0 \cdot (1 + r_f) + \sum_{\ell=1}^L x_{t-1}^\ell \cdot e_t^\ell
\]

Assumption

No trader can take short position in any asset, i.e. the image of traders’ investment functions is restricted such that

\[
f_n : \mathbb{R}^{\tau \times L} \longrightarrow \text{Int} \left(\triangle^L \right)
\]
Market selection and survival patterns

Definition

Individual wealth shares:

\[\varphi_{n,t} = \frac{W_{n,t}}{\sum_{n=1}^{N} W_{n,t}} \]

- A trader \(n \) is said to ‘survive’ the economy if his long-run wealth-share is significantly different from 0, i.e. if \(\lim_{t \to \infty} \varphi_{n,t} > 0 \)
- A trader \(n \) is said to ‘dominate’ the economy if his long-run wealth-share is significantly close to 1, i.e. if \(\lim_{t \to \infty} \varphi_{n,t} = 1 \)

Following Anufriev et al. (2006), two types of equilibria are possible:

1. Single-survivor equilibria (most ‘aggressive’ trader)
2. Multiple-survivor equilibria (non-generic)
Definition

Individual wealth shares:

\[
\varphi_{n,t} = \frac{W_{n,t}}{\sum_{n=1}^{N} W_{n,t}}
\]

- A trader \(n \) is said to ‘survive’ the economy if his long-run wealth-share is significantly different from 0, i.e. if \(\lim_{t \to \infty} \varphi_{n,t} > 0 \)
- A trader \(n \) is said to ‘dominate’ the economy if his long-run wealth-share is significantly close to 1, i.e. if \(\lim_{t \to \infty} \varphi_{n,t} = 1 \)

Following Anufriev et al. (2006), two types of equilibria are possible:

1. Single-survivor equilibria (most ‘aggressive’ trader)
2. Multiple-survivor equilibria (non-generic)
Outline

1 Context and proposal
2 Methodological perspective
3 The model
4 Simulation and results
5 Concluding remarks and conceivable extension
Simulation results - survival patterns

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial population size</td>
<td>(N = 200)</td>
</tr>
<tr>
<td>Number of risky assets</td>
<td>(L = 1)</td>
</tr>
<tr>
<td>Static population</td>
<td>true</td>
</tr>
<tr>
<td>Riskless rate of return</td>
<td>(r_f = 0.02)</td>
</tr>
<tr>
<td>(\gamma) distribution</td>
<td>(\gamma_n \sim \mathcal{U}(1.0, 1000.0))</td>
</tr>
<tr>
<td>(\lambda) distribution</td>
<td>(\lambda_n = 0.1, \ \forall n \in \mathcal{N})</td>
</tr>
<tr>
<td>(d) distribution</td>
<td>(d_n = 1.0, \ \forall n \in \mathcal{N})</td>
</tr>
<tr>
<td>Initial wealth endowment</td>
<td>(W_{n,0} = 50.0, \ \forall n \in \mathcal{N})</td>
</tr>
<tr>
<td>Yield mean</td>
<td>(\bar{e} = 0.04)</td>
</tr>
<tr>
<td>Yield variance</td>
<td>(\sigma_e^2 = 1.0e-4)</td>
</tr>
<tr>
<td>Yield realisation distribution</td>
<td>(e_t \sim \mathcal{N}(\bar{e}, \sigma_e^2))</td>
</tr>
<tr>
<td>Initial risky asset price level</td>
<td>(p_0 = 0.1)</td>
</tr>
<tr>
<td>(x_n) admissible interval</td>
<td>(x_{n,t} \in [0.01, 0.99], \ \forall n \in \mathcal{N}, \ \forall t)</td>
</tr>
</tbody>
</table>

Table: Parameters and initial conditions (1)
Figure: Evolution of wealth-share for the least-risk-averse trader. Single-survivor.
Simulation results - survival patterns (cont’d)

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial population size</td>
<td>$N = 200$</td>
</tr>
<tr>
<td>Number of risky assets</td>
<td>$L = 1$</td>
</tr>
<tr>
<td>Static population</td>
<td>true</td>
</tr>
<tr>
<td>Riskless rate of return</td>
<td>$r_f = 0.02$</td>
</tr>
<tr>
<td>γ distribution</td>
<td>$\gamma_n \sim \mathcal{U}(100.0, 1000.0)$</td>
</tr>
<tr>
<td>λ distribution</td>
<td>$\lambda_n = 0.1, \forall n \in \mathcal{N}$</td>
</tr>
<tr>
<td>d distribution</td>
<td>$d_n = 1.0, \forall n \in \mathcal{N}$</td>
</tr>
<tr>
<td>Initial wealth endowment</td>
<td>$W_{n,0} = 50.0, \forall n \in \mathcal{N}$</td>
</tr>
<tr>
<td>Yield mean</td>
<td>$\bar{e} = 0.04$</td>
</tr>
<tr>
<td>Yield variance</td>
<td>$\sigma^2_e = 1.0e-4$</td>
</tr>
<tr>
<td>Yield realisation distribution</td>
<td>$e_t \sim \mathcal{N}(\bar{e}, \sigma^2_e)$</td>
</tr>
<tr>
<td>Initial risky asset price level</td>
<td>$p_0 = 0.1$</td>
</tr>
<tr>
<td>x_n admissible interval</td>
<td>$x_{n,t} \in [0.01, 0.99], \forall n \in \mathcal{N}, \forall t$</td>
</tr>
</tbody>
</table>

Table: Parameters and initial conditions (2)
Simulation results - survival patterns (cont’d)

Figure: Evolution of wealth-share for the least-risk-averse trader. Single-survivor.
Simulation results - survival patterns (cont’d)

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial population size</td>
<td>$N = 200$</td>
</tr>
<tr>
<td>Number of risky assets</td>
<td>$L = 1$</td>
</tr>
<tr>
<td>Static population</td>
<td>true</td>
</tr>
<tr>
<td>Riskless rate of return</td>
<td>$r_f = 0.02$</td>
</tr>
<tr>
<td>γ distribution</td>
<td>$\gamma_n \sim \mathcal{U}(1.0, 1000.0)$</td>
</tr>
<tr>
<td>λ distribution</td>
<td>$\lambda_n = 0.01, \forall n \in \mathcal{N}$</td>
</tr>
<tr>
<td>d distribution</td>
<td>$d_n = 1.0, \forall n \in \mathcal{N}$</td>
</tr>
<tr>
<td>Initial wealth endowment</td>
<td>$W_{n,0} = 50.0, \forall n \in \mathcal{N}$</td>
</tr>
<tr>
<td>Yield mean</td>
<td>$\bar{e} = 0.04$</td>
</tr>
<tr>
<td>Yield variance</td>
<td>$\sigma_{\bar{e}}^2 = 1.0e^{-4}$</td>
</tr>
<tr>
<td>Yield realisation distribution</td>
<td>$e_t \sim \mathcal{N} (\bar{e}, \sigma_{\bar{e}}^2)$</td>
</tr>
<tr>
<td>Initial risky asset price level</td>
<td>$p_0 = 0.1$</td>
</tr>
<tr>
<td>x_n admissible interval</td>
<td>$x_{n,t} \in [0.01, 0.99], \forall n \in \mathcal{N}, \forall t$</td>
</tr>
</tbody>
</table>

Table: Parameters and initial conditions (3)
Simulation results - survival patterns (cont’d)

(a) lowest γ_n

(b) second-lowest γ_n

(c) highest γ_n

Figure: Multiple-survivor equilibrium. Evolution of wealth-shares.
Heterogeneity in the risk-aversion coefficient, within the stability domain of the system, triggers a wealth-driven selection mechanism.

- For a short memory-span (large λ), the least risk-averse trader survives and dominates the economy;
- For a long memory-span (small λ), multiple traders, still low-risk averse, survive and display identical investment decisions.

Out of the stability domain of the system (i.e. for large enough λ, following Anufriev et al. 2006) selection does not occur: individual wealth-shares keep fluctuating indefinitely.
Heterogeneity in the risk-aversion coefficient, within the stability domain of the system, triggers a wealth-driven selection mechanism.

- For a short memory-span (large λ), the least risk-averse trader survives and dominates the economy;
- For a long memory-span (small λ), multiple traders, still low-risk averse, survive and display identical investment decisions.

Out of the stability domain of the system (i.e. for large enough λ, following Anufriev et al. 2006) selection does not occur: individual wealth-shares keep fluctuating indefinitely.
Heterogeneity in the risk-aversion coefficient, within the stability domain of the system, triggers a wealth-driven selection mechanism.

- For a short memory-span (large λ), the least risk-averse trader survives and dominates the economy;
- For a long memory-span (small λ), multiple traders, still low-risk averse, survive and display identical investment decisions.

Out of the stability domain of the system (i.e. for large enough λ, following Anufriev et al. 2006) selection does not occur: individual wealth-shares keep fluctuating indefinitely.
Simulation results: price dynamics

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial population size</td>
<td>$N = 1000$</td>
</tr>
<tr>
<td>Number of risky assets</td>
<td>$L = 1$</td>
</tr>
<tr>
<td>Static population</td>
<td>true</td>
</tr>
<tr>
<td>Riskless rate of return</td>
<td>$r_f = 0.02$</td>
</tr>
<tr>
<td>γ distribution</td>
<td>$\gamma_n \sim U(1.0, 500.0)$</td>
</tr>
<tr>
<td>λ distribution</td>
<td>$\lambda_n = 0.0036, \ \forall n \in N$</td>
</tr>
<tr>
<td>d distribution</td>
<td>$d_n = 1.0, \ \forall n \in N$</td>
</tr>
<tr>
<td>Initial wealth endowment</td>
<td>$W_{n,0} = 50.0, \ \forall n \in N$</td>
</tr>
<tr>
<td>Yield mean</td>
<td>$\bar{e} = 0.04$</td>
</tr>
<tr>
<td>Yield variance</td>
<td>$\sigma_e^2 = 1.0e-4$</td>
</tr>
<tr>
<td>Yield realisation distribution</td>
<td>$e_t \sim \mathcal{N}(\bar{e}, \sigma_e^2)$</td>
</tr>
<tr>
<td>Initial risky asset price level</td>
<td>$p_0 = 0.1$</td>
</tr>
<tr>
<td>x_n admissible interval</td>
<td>$x_{n,t} \in [0.01, 0.99], \ \forall n \in N, \ \forall t$</td>
</tr>
</tbody>
</table>

Table: Parameters and initial conditions (4)
Figure: Price dynamics. Smooth and monotone convergence to equilibrium.
Simulation results: price dynamics (cont’d)

Figure: Price dynamics. Emergence of a bubble-and-bust cycle. $\lambda_n = 0.00365$
Figure: Price dynamics. Emergence of multiple bubble-and-bust cycles. $\lambda_n = 0.155$
Figure: Price dynamics. No convergence to an equilibrium value. $\lambda_n = 0.16$
The emergent properties observed in a trend-chasers-only setting maintain robustness with respect to the introduction of fundamentalist and trend-contrarian traders in the economy.

- Fundamentalists are expected to stabilise the price as they act against chartists whenever current price deviates from its fundamental value;
- Contrarians shall counteract the attempt made by trend-chasers to exacerbate the price trend by acting in a symmetrical fashion.

We differentiate the d parameter in order to model a population largely composed of quasi-fundamentalists and well balanced crowds of trend-chasers and contrarians.
The emergent properties observed in a trend-chasers-only setting maintain robustness with respect to the introduction of fundamentalist and trend-contrarian traders in the economy.

- Fundamentalists are expected to stabilise the price as they act against chartists whenever current price deviates from its fundamental value;
- Contrarians shall counteract the attempt made by trend-chasers to exacerbate the price trend by acting in a symmetrical fashion.

We differentiate the d parameter in order to model a population largely composed of quasi-fundamentalists and well balanced crowds of trend-chasers and contrarians.
The emergent properties observed in a trend-chasers-only setting maintain robustness with respect to the introduction of fundamentalist and trend-contrarian traders in the economy.

- Fundamentalists are expected to stabilise the price as they act against chartists whenever current price deviates from its fundamental value;
- Contrarians shall counteract the attempt made by trend-chasers to exacerbate the price trend by acting in a symmetrical fashion.

We differentiate the d parameter in order to model a population largely composed of quasi-fundamentalists and well balanced crowds of trend-chasers and contrarians.
The emergent properties observed in a trend-chasers-only setting maintain robustness with respect to the introduction of fundamentalist and trend-contrarian traders in the economy.

- Fundamentalists are expected to stabilise the price as they act against chartists whenever current price deviates from its fundamental value;
- Contrarians shall counteract the attempt made by trend-chasers to exacerbate the price trend by acting in a symmetrical fashion.

We differentiate the d parameter in order to model a population largely composed of quasi-fundamentalists and well balanced crowds of trend-chasers and contrarians.
We now shift the analysis to the transitional price dynamics:

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial population size</td>
<td>(N = 1000)</td>
</tr>
<tr>
<td>Number of risky assets</td>
<td>(L = 1)</td>
</tr>
<tr>
<td>Static population</td>
<td>true</td>
</tr>
<tr>
<td>Riskless rate of return</td>
<td>(r_f = 0.02)</td>
</tr>
<tr>
<td>(\gamma) distribution</td>
<td>(\gamma_n \sim U(1.0, 500.0))</td>
</tr>
<tr>
<td>(\lambda) distribution</td>
<td>(\lambda_n = 0.1, \ \forall n \in N)</td>
</tr>
<tr>
<td>(d) distribution</td>
<td>(d_n \sim N(0, 1))</td>
</tr>
<tr>
<td>Initial wealth endowment</td>
<td>(W_{n,0} = 50.0, \ \forall n \in N)</td>
</tr>
<tr>
<td>Yield mean</td>
<td>(\bar{e} = 0.04)</td>
</tr>
<tr>
<td>Yield variance</td>
<td>(\sigma_e^2 = 1.0 \times 10^{-4})</td>
</tr>
<tr>
<td>Yield realisation distribution</td>
<td>(e_t \sim N(\bar{e}, \sigma_e^2))</td>
</tr>
<tr>
<td>Initial risky asset price level</td>
<td>(p_0 = 0.1)</td>
</tr>
<tr>
<td>(x) admissible interval</td>
<td>(x_{n,t} \in [0.01, 0.99], \ \forall n \in N, \ \forall t)</td>
</tr>
</tbody>
</table>

Table: Parameters and initial conditions (5)
Simulation results: price dynamics (cont’d)

Figure: Price dynamics. Fundamentalists vs. chartists.
Figure: Price dynamics. Fundamentalists vs. chartists. $\gamma_n \sim U(1.0, 1000.0)$
Simulation results: micro-failure

Figure: Price dynamics. Micro-failure striking every $\tau = 15$ periods.
1 Context and proposal

2 Methodological perspective

3 The model

4 Simulation and results

5 Concluding remarks and conceivable extension
Concluding remarks

1. Analysis of individual wealth-shares
 - strong market selection mechanism
 - single- and multiple-survivor equilibria
 - riskier investment functions globally dominate

2. Analysis of transitional price dynamics
 - emergence of bubble-and-bust cycles
 - robust to the introduction of fundamentalist and trend-contrarian

Our framework can be extended in a number of directions:
 - multiple risky assets
 - dynamic population
 - more realistic traders’ behaviour (prospect theory, herding) and learning (genetic algorithms, classifier systems)
Concluding remarks

1. Analysis of individual wealth-shares
 - strong market selection mechanism
 - single- and multiple-survivor equilibria
 - riskier investment functions globally dominate

2. Analysis of transitional price dynamics
 - emergence of bubble-and-bust cycles
 - robust to the introduction of fundamentalist and trend-contrarian

Our framework can be extended in a number of directions:

- multiple risky assets
- dynamic population
- more realistic traders’ behaviour (prospect theory, herding) and learning (genetic algorithms, classifier systems)
Concluding remarks

1. Analysis of individual wealth-shares
 - strong market selection mechanism
 - single- and multiple-survivor equilibria
 - riskier investment functions globally dominate

2. Analysis of transitional price dynamics
 - emergence of bubble-and-bust cycles
 - robust to the introduction of fundamentalist and trend-contrarian

Our framework can be extended in a number of directions:

- multiple risky assets
- dynamic population
- more realistic traders’ behaviour (prospect theory, herding) and learning (genetic algorithms, classifier systems)

