Robots and the origin of their labour-saving impact

Fabio Montobbioa,b,c Jacopo Stacciolia,d M. Enrica Virgillitod,a Marco Vivarellia,e,f

aDepartment of Economic Policy, Università Cattolica del Sacro Cuore, Milan, Italy
bBRICK, Collegio Carlo Alberto, Turin, Italy
cICRIOS, Bocconi University, Milan, Italy
dInstitute of Economics, Scuola Superiore Sant’Anna, Pisa, Italy
eUNU-MERIT, Maastricht, The Netherlands
fIZA, Bonn, Germany

This version: 15th February 2020
Outline

1 Context and motivation

2 Data and analysis

3 Results

4 Topic modelling and technological taxonomy

5 Discussion
Motivation

- The impact of automation upon employment has become a major topic of discussion both in policy and academic debate.

Brynjolfsson and McAfee (2011, 2014) The root of current unemployment is not the Great Recession, but rather a ‘Great Restructuring’ characterised by an exponential growth in computers’ processing power having an ever-bigger impact on jobs, skills, and the whole economy (“This time is different”)

Frey and Osborne (2017) 47% of the occupational categories are at high risk of being automated, including services and highly cognitive jobs.
“Automated systems, such as robotic systems, are used in a variety of industries to reduce labor costs and/or increase productivity. Additionally, the use of human operators can involve increased cost relative to automated systems.” [US20170178485A1]

“The use of [robotic] technology results in improved management of information, services, and data, increased efficiency, significant reduction of time, decreased manpower requirements, and substantial cost savings.” [US20100223134A1]
Our contribution

- we use natural language processing and probabilistic topic modelling techniques on the universe of 2009–2018 patent applications at USPTO, matched with ORBIS (BvD)
- we investigate the presence of explicit labour-saving heuristics among robotic patents
- we include not only patents entailing robotic artefacts as a *product* but also as *process* and complementary technology
- we analyse innovative actors engaged in robotic technology and their economic environment (identity, location, industry)
- we identify the technological fields that are particularly exposed to labour-saving innovations
- we pinpoint the technological bottlenecks underlying the search efforts inspiring robotics inventors
Outline

1. Context and motivation
2. Data and analysis
3. Results
4. Topic modelling and technological taxonomy
5. Discussion
Original data

- **universe** of USPTO patent applications from 1st January 2009 to 31st December 2018
- 3,557,435 full-text applications (hereafter, patents)

![Bar chart showing the number of patents by year from 2009 to 2018]

Figure: # of patents by year
Robotic patents

- Identification of robotics-[related] patents
 1. via CPC codes
 - USPTO concordance table with USPC class 901
 - purely robotic technology
 - 10,929 ‘CPC’ patents
 2. via keyword search
 - multiple occurrence (×10) of morphological root ‘robot’
 - process implementation and complementary technology
 - 18,860 ‘K10’ patents (once those already in 1 have been discarded)

- 29,789 total robotic patents
Robotic patents (cont’d)

Robots and the origin of their labour-saving impact

Jacopo Staccioli, PHD

15th February 2020
Text preprocessing

tokenisation
- each patent textual body is divided into *sentences* by means of a punctuation regexp
- patent text \rightarrow list of sentences
- sentence \rightarrow list of words

stemming
- each word in each sentence is reduced to its morphological root with the Porter2 stemming algorithm (an improved version of the original Porter (1980) algorithm)
- patent text \rightarrow list of lists of stemmed words

- identification of labour-saving (LS) patents by means of a *word*-level text query per sentence
Labour-saving patents

- 336 combinations of triplets (not trigrams, as we do not require adjacency)
- a patent is flagged as potentially LS if contains at least one triplet within a sentence
- 1,666 potentially LS patents
all matched sentences are manually examined and flagged as explicitly LS if appropriate
1,276 explicitly LS patents (≈ 77% of potentially LS; ≈ 4.3% of robotic patents)
of which 461 (≈ 36.1%) are CPC and 815 (≈ 63.9%) are K10

Figure: Fraction of explicitly LS patents over robotic patents by year
Firm level match

- LS patents are matched to their assignee via ORBIS (BvD)
- number reduces to 1,136 (≈ 89%) due to truncation on 31st July 2018 (140 discarded)
- of these, 903 (≈ 79%) are matched to at least one firm (233 find no match)
- there are 408 LS firms in total
1 Context and motivation

2 Data and analysis

3 Results

4 Topic modelling and technological taxonomy

5 Discussion
LS patents by country – absolute value

Robots and the origin of their labour-saving impact

Jacopo Staccioli, PhD

15th February 2020
LS patents by country – as % of robotic patents

Robots and the origin of their labour-saving impact

Jacopo Staccioli, PhD
15th February 2020
Robots and the origin of their labour-saving impact

Jacopo Staccioli, PhD

15th February 2020
LS patents by industry

Robots and the origin of their labour-saving impact

Jacopo Staccioli, PHD

15th February 2020
1. Context and motivation

2. Data and analysis

3. Results

4. Topic modelling and technological taxonomy

5. Discussion
Probabilistic topic model

1. we estimate a topic model with $K = 20$ topics on the whole collection of robotic patents D
 - each topic $k \in K$ is identified as a list of keywords ranked by frequency
 - each patent $d \in D$ is assigned a distribution $\theta_{d,k}$ over the K topics

2. we assign a significance measure of CPC codes ($c \in C$) originally attributed to patents to each topic k by leveraging on the \textit{latent semantic structure} of the whole collection of patents, through relevance distributions $\theta_{d,k}$ obtained in 1
 \[
 \phi_{c,k} = \sum_{d \in D} 1\{c \in d\} \cdot \theta_{d,k} \quad \forall k = 1, \ldots, K; \quad \forall c \in C
 \]
 - this brings useful information for labelling the topics

3. we compare the relevance of the K topics for robotic patents and the subset of LS patents

Robots and the origin of their labour-saving impact

Jacopo Staccioli, PHD

15th February 2020
Topic relevance for robotic and LS patents

Robots and the origin of their labour-saving impact

Jacopo Staccioli, PHD

15th February 2020
<table>
<thead>
<tr>
<th>Topic #</th>
<th>LS relev.</th>
<th>Words</th>
<th>CPC</th>
<th>Weight</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>+132.2%</td>
<td>carrier, conveyor</td>
<td>B65</td>
<td>24.4%</td>
<td>Conveying; packing; storing; handling thin or filamentary material</td>
</tr>
<tr>
<td></td>
<td></td>
<td>item, gripper,</td>
<td>H01</td>
<td>6.8%</td>
<td>Basic electric elements</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tape</td>
<td>G11</td>
<td>6.0%</td>
<td>Information storage</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y02</td>
<td>4.6%</td>
<td>Technologies or applications for mitigation or adaptation against climate change</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B23</td>
<td>4.3%</td>
<td>Machine tools; metal-working not otherwise provided for</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>−75.2%</td>
<td>heater, hydrocarbon, pipe, drill, gas</td>
<td>H01</td>
<td>8.6%</td>
<td>Basic electric elements</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E21</td>
<td>6.6%</td>
<td>Earth drilling; mining</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B23</td>
<td>5.5%</td>
<td>Machine tools; metal-working not otherwise provided for</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y10T29</td>
<td>4.4%</td>
<td>Metal working</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y02</td>
<td>4.4%</td>
<td>Technologies or applications for mitigation or adaptation against climate change</td>
</tr>
</tbody>
</table>
Outline

1. Context and motivation
2. Data and analysis
3. Results
4. Topic modelling and technological taxonomy
5. Discussion
Main findings

- LS firms are not only robots producers, but mainly adopters (archetypical cases are Boeing, Amazon, and UPS)
- The overall number of robotic patents is rapidly expanding (3-fold increase in a decade)
- Conversely, LS patents do not exhibit a clear trend, supporting the idea that labour-saving is a rather established heuristic
- LS robotic patents emerge along the entire supply chain, signalling pervasiveness
- LS patents are concentrated in labour intensive industries (e.g. logistics, healthcare)
- Technological bottlenecks identified by Frey and Osborne (2017) (occupations requiring social and cognitive intelligence, finger dexterity and manipulation) are under active research efforts by innovative firms
Thank you very much!

jacopo.staccioli@unicatt.it

this presentation available at www.staccioli.org/research