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Abstract

The present Thesis investigates the root causes and the complex mechanisms
underlying the emergence of fluctuations in stock markets’ dynamics, with a
special focus on those that originate from within the market, i.e. endogenously,
as opposed to those arising as (possibly exaggerated) response to external,
freshly available fundamental news. It consists of three independent and self-
contained essays, in the sense that they tackle distinct research questions and
none of them builds upon the others’ results, each employing a very different
scientific methodology but all attributable to the literature of complexity eco-
nomics in its financial flavour. The first essay proposes a heterogeneous agent
model of a stock market in which a risky asset and a bond are exchanged, and
demand on behalf of a group of traders is subject to random shocks. The second
develops a parsimonious agent-based model of a stock market in which a large
population of high-frequency traders exchange a long-lived security. Finally,
the third empirically investigate large databases of intra-day volatility trajector-
ies from two major stock markets indices, the S&P500 and the EURONEXT 100,
along the lines of functional principal component analysis.

JEL classification: C58, C62, C63, D84, G11, G12, G15.

Keywords: Heterogeneous Agents, Evolutionary Finance, Stylised Facts,
Intra-day Financial Dynamics, Functional Principal Component Analysis.
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1
Introduction

The present Thesis investigates the root causes and the complex mechanisms un-
derlying the emergence of fluctuations in stock markets’ dynamics, with a spe-
cial focus on those that originate from within the market, i.e. endogenously, as
opposed to those arising as (possibly exaggerated) response to external, freshly
available fundamental news. The recent history of financial turmoil events, in-
cluding prolonged financial crises and sudden flash crashes, demonstrates the
importance, under both the positive and the normative perspectives, of a thor-
ough understanding of financial fluctuations for the development of market reg-
ulation aimed at mitigating their negative effects. Yet, to date, there is still little
agreement on behalf of policymakers on why financial markets occasionally ex-
perience sudden and unexpected turbulence, and what are the necessary actions
to prevent it or alleviate its symptoms. What is clear however, more so to practi-
tioners than to scholars, is that many episodes regularly unfolding on financial
markets cannot be properly explained on the grounds of traditional neoclas-
sical theories based on the so-called efficient market hypothesis (EMH). Loosely
speaking, the latter claims that markets are efficient, in the sense that

“security prices at any time ‘fully reflect’ all available information”.
(Fama, 1970, p. 383)

The logically consequent corollary is that, especially for short-term horizons in
which risk-premia can be assumed to be constant, stock market prices evolve
as a random walk and future price changes are completely unpredictable (see
Bachelier, 1900; Samuelson, 1965). In other words, no amount of computation
over what is known today would in any way improve a forecast of the price
change tomorrow. As Malkiel puts it ,

“Taken to its logical extreme, [the random walk hypothesis] means that
a blindfolded monkey throwing darts at a newspaper’s financial pages could
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1. Introduction

select a portfolio that would do just as well as one carefully selected by the
experts.” (Malkiel, 2016, p. 24)

This stands clearly at odds with empirical evidence (and popular wisdom) sug-
gesting the existence of sophisticated techniques, e.g. fundamental and technical
analysis, whose skills have been for decades highly demanded and rewarded
by financial institutions, which are able to ‘beat the market’ in a way that is
far too systematic than what can be expected from for a purely random draw
(see Lo and MacKinley, 2002 and references therein; for a critique see Malkiel,
2003; Timmermann and Granger, 2004). American business magnate Warren
E. Buffett, himself a critic of the EMH (see Buffett, 1984), is but an example.
A few studies identify a significant relation between price-earning ratios and
subsequent returns performance (Basu, 1977; Bhargava, 2014; Breen and Sav-
age, 1968; Breen, 1968; Dreman and Berry, 1995; Jensen, 1978; McWilliams, 1966;
Nicholson, 1968). Others find consistent seasonality effects which are unrelated
to fundamental news, e.g. around the turn of the week, of the month, of the
year, and around holidays (Lakonishok and Smidt, 1988; Thaler, 1987), and cor-
relations between market performance and bizarre variables such as weather
(Hirshleifer and Shumway, 2003), traders’ morning testosterone levels (Coates
and Herbert, 2008) and their physical manifestations of stress (Lo et al., 2005).

Motivated by the overwhelming empirical evidence (of which the aforemen-
tioned is but an instance) and by a different introspection, based on psycholo-
gical and cognitive biases affecting economic decision-making on the one hand,
and on the evolutionary process of biological and ecological systems on the
other, a growing population of theorists from different branches of the eco-
nomic discipline have recently questioned previously incontrovertible notions
such as market efficiency, equilibrium and perfect rationality (see e.g. Barberis,
2013; Benartzi and Thaler, 1995; Bouchaud, 2008; Campbell, 2000; Farmer, 2002;
Farmer and Lo, 1999; Hirshleifer, 2001; Hirshleifer and Luo, 2001; Hirshleifer,
1977; Kahneman, 2003; Kahneman and Tversky, 1979; Kirman, 1992; Lo, 2004;
Nelson and Winter, 1982). Within the financial literature this revolution, largely
still under way, has spurred a number of mostly interrelated fields. A few labels
include behavioural finance (Barberis and Thaler, 2003) and evolutionary fin-
ance (Hens and Schenk-Hoppé, 2005), whose boundaries are, to a good extent,
a matter of personal taste. These fields are united in relaxing some of the as-
sumptions of rigorous neoclassical economics and in embracing the possibility
of framed and boundedly-rational decision making on behalf of heterogeneous
agents based upon simple heuristics, thereby encompassing the possibility of

14



1. Introduction

prolonged mispricing and of inefficient market selection mechanisms. The eco-
nomy is regarded as a complex adaptive system, namely a system with multiple
elements adapting or reacting to the pattern that these elements themselves cre-
ate, and in which a perfect understanding of the individual parts does not auto-
matically convey a similar understanding of the whole system’s behaviour (see
Arthur, 1999, 2014; Kirman, 2011; Miller and Page, 2007; Rosser, 1999).

“Such systems arise naturally in the economy. Economic agents, be they
banks, consumers, firms, or investors, continually adjust their market
moves, buying decisions, prices, and forecasts to the situation these moves
or decisions or prices or forecasts together create. But unlike ions in a spin
glass, which always react in a simple way to their local magnetic field, eco-
nomic elements (human agents) react with strategy and foresight by consid-
ering outcomes that might result as a consequence of behaviour they might
undertake. This adds a layer of complication to economics that is not exper-
ienced in the natural sciences. Conventional economic theory chooses not to
study the unfolding of the patterns its agents create but rather to simplify
its questions in order to seek analytical solutions.”

(Arthur, 1999, p. 107)

Complexity economics, rather than being a new theory in competition with
the established neoclassical paradigm, is a generalisation of the latter that ac-
counts for out-of-equilibrium behaviour, as opposed to restricting uniquely to
strategies that consistently induce no further reaction from the system’s ecology.

The concept of bounded rationality captures both the cognitive limitations of
economic actors and the limited time available to them when making decisions.
This is especially true in a hectic environment such as that of a stock exchange
trading floor, in which split-second decisions have far-reaching implications in
terms of gains and losses. As Herbert A. Simon recognises,

“it appears probable that, however adaptive the behavio[u]r of organisms in
learning and choice situations, this adaptiveness falls far short of the ideal of
‘maximi[s]ing’ postulated in economic theory. Evidently, organisms adapt
well enough to ‘satisfice’; they do not, in general, ‘optimi[s]e’.”

(Simon, 1956, p. 129)

“Because administrators satisfice rather than maximi[s]e, they can choose
without first examining all possible behavio[u]r alternatives and without
ascertaining that these are in fact all the alternatives. Because they treat
the world as rather empty and ignore the interrelatedness of all things [. . . ],

15



1. Introduction

they can make their decisions with relatively simple rules of thumb that do
not make impossible demands upon their capacity for thought. Simplifica-
tion may lead to error, but there is no realistic alternative in the face of the
limits on human knowledge and reasoning.” (Simon, 1997, p. 119)

Bounded rationality should not be seen as a limitation, but rather as an enhan-
cing mechanism by means of which an economic agent can make a (possibly
sub-optimal) decision when the postulates required by rational maximising be-
haviour are not met (see also Conlisk, 1996; Simon, 1979). In this framework,
the concept of heuristic is a leading instrument within the so-called ‘adaptive
toolbox’ (Goldstein and Gigerenzer, 2002).

“A heuristic is a strategy that ignores part of the information, with the goal
of making decisions more quickly, frugally, and/or accurately than more
complex methods.” (Gigerenzer and Gaissmaier, 2011, p. 454)

Gigerenzer (2008) argues that the intuition of heuristics producing second-best
results is a misconception. He recognises that, in many situations, carrying
out a proper optimisation procedure is hindered by computational intractab-
ility, while in others the latter may turn out to be less accurate because of lack of
robustness and estimation errors. Interestingly, DeMiguel et al. (2009) show that
the out-of-sample performance of the naïve diversification strategy 1/N can ex-
ceed that of a number of supposedly more ‘optimal’ strategies, including the
Markowitz (1952) mean-variance portfolio and others based on sophisticated
Bayesian techniques.1 The intrinsic difficulty attached to the process of gather-
ing what Fama (1970) terms “all available information” had been well recognised
by John M. Keynes long before the EMH was even conceived. He argues that
investors’ sentiment and market psychology (in his own words, “animal spirits”)
play an important role in everyday financial markets (see also Shiller, 2016).

1Anecdotal evidence reports that Markowitz himself did not use his award-winning optimiz-
ation technique for his own retirement investments, relying instead on the naïve 1/N heur-
istic (Gigerenzer, 2008). Similarly, in spite of his sophisticated stock-picking value-investing
techniques based on careful fundamental analysis, Warren E. Buffett’s will consists of ex-
traordinarily simple rules:

“My advice to the trustee could not be more simple: Put 10% of the cash in short-term
government bonds and 90% in a very low-cost S&P500 index fund. [. . . ] I believe the
trust’s long-term results from this policy will be superior to those attained by most in-
vestors – whether pension funds, institutions or individuals – who employ high-fee man-
agers.” (2013 Shareholder Letter, Berkshire Hathaway Inc., p. 20)

16



1. Introduction

“Investment based on genuine long-term expectation is so difficult as to
be scarcely practicable. He who attempts it must surely lead much more
laborious days and run greater risks than he who tries to guess better than
the crowd how the crowd will behave; and, given equal intelligence, he may
make more disastrous mistakes.” (Keynes, 1936, Chapter 12)

This excerpt also highlights the role played by the so-called ‘beauty contest’
mechanism, according to which instead of picking a stock (a person’s face in
the original Keynesian metaphor) that she genuinely considers undervalued
(attractive), e.g. because the issuing firm displays sound fundamentals, a short-
term trader may well be better off guessing what would the majority of other
traders’ choose, and then make a selection based on some inference from her
knowledge of public perceptions. Even better, a trader could infer what other
traders infer about the general perception, and so on and so forth.

“It is not a case of choosing those which, to the best of one’s judg[e]ment, are
really the prettiest, nor even those which average opinion genuinely thinks
the prettiest. We have reached the third degree where we devote our intelli-
gences to anticipating what average opinion expects the average opinion to
be. And there are some, I believe, who practise the fourth, fifth and higher
degrees.” (Keynes, 1936, Chapter 12)

This type of behaviour, which serves as a microfoundation for many principles
of Dow theory and technical analysis, can generate self-sustaining departure of
market prices from the consensus of underlying fundamental values, and it can
ultimately fuel so-called rational bubbles (Allen et al., 2006).

The modelling attempts that embrace the aforementioned complex systems
philosophy have proven able to reproduce some of the empirical properties, the
so-called ‘stylised facts’, that conventional economic theory struggles to recon-
cile (milestones in this literature include Arthur et al., 1997; Blume and Eas-
ley, 1992, 2006; Brock and Hommes, 1998; Levy et al., 1994; Lux, 1995, 1998;
Lux and Marchesi, 2000; Sandroni, 2000, and more recent follow-ups). Due to
the intrinsic non-linear nature of boundedly-rational behaviour and the high di-
mensionality associated with agents’ heterogeneity, these models raise import-
ant methodological challenges. In particular, there exists a trade-off between
deductive methods that necessitate unrealistic simplifying assumptions (albeit
more realistic than traditional neoclassical ones) and inductive methods which
are however more difficult to falsify and generalise. Among the deductive meth-
ods, heterogeneous agents models (Hommes, 2006) build upon the mathemat-
ical theory of dynamical systems and propose analytically tractable equations
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1. Introduction

that describe the laws of motion of the economy. Since the complexity of these
models grows dramatically with the underlying dimensionality, in order to ob-
tain a close form solution, it is customary to focus on a very limited number of
agent types (usually no more than two or three), and to assume simple pricing
schemes (e.g. Walrasian) that have no actual counterpart in real market settings.
Among the inductive methods, agent-based models (LeBaron, 2006) rely upon
extensive numerical simulations and are therefore not constrained by analytical
tractability issues. These models are usually very high-dimensional (it is not
uncommon to include hundreds or thousands of different agents) and attempt
at thoroughly replicating realistic economic scenarios. On the one hand, they
provide an extremely flexible way of testing very complex behavioural and mi-
crostructural assumptions at virtually no cost (besides the time complexity of
the underlying algorithms). On the other hand, the proper robustness of their
result can be difficult to assess, and the extent of their generalisability is still an
open question.2

The present Thesis is intended as a contribution to the literature of complex-
ity economics in its financial flavour. It consists of three independent and self-
contained essays, in the sense that they tackle distinct research questions and
none of them builds upon the others’ results, each employing a very different
scientific methodology. The Thesis is organised as follows.

Chapter 2, titled “Asset prices and wealth dynamics in a financial market with ran-
dom demand shocks”, proposes a heterogeneous agents model of a stock market
in which a long-lived risky asset and a risk-free bond are exchanged, and de-
mand on behalf of a group of traders is subject to random shocks. The impact
of demand shocks upon market clearing prices depends on the relative wealth
dynamics of the different groups of traders involved. By studying the local sta-
bility of deterministic and random fixed points of the random dynamical system
whose state variables are the agents’ relative wealth, the risky asset’s return, and
the dividend yield, we provide conditions on agents’ portfolios under which
such price impact is either maximal, when the traders subject to demand shocks
dominate, minimal, when the traders subject to demand shocks vanish, or en-
dogenously determined, when all traders survive and their relative wealth dy-
namics is a mean reverting process. Overall, the price impact of demand shocks
brings an intrinsic penalty to the group of traders subject to them. Contrary to
previous contributions in which portfolios that are more skewed towards the

2It is worth noting that controlled laboratory experiments also belong to the inductive class of
methods (Bloomfield and Anderson, 2010).
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risky security provide better survival chances, we find that a riskier portfolio
may systematically fail to outperform a relatively safer one, should the former
be subject to demand shocks.

Chapter 3, titled “An agent-based model of intra-day financial markets dynamics”,
develops a parsimonious agent-based model of a stock market in which a risky
security is exchanged at high frequency among a large population of heterogen-
eous traders. We design our simulations to closely replicate the timing structure
of an existing stock market, namely the EURONEXT, in order to map the itera-
tions of our algorithm with proper calendar time. We show that simple beha-
vioural assumptions, such as chartist vs. fundamentalist behaviour and an en-
dogenous participation scheme based on past profitability signals, are sufficient
to simultaneously reproduce many of the stylised facts that financial markets
exhibit at the high-frequency level of time granularity. These include proper-
ties related to returns (leptokurtosis, absence of linear autocorrelation, volatility
clustering), trading volumes (volume clustering, correlation between volume
and volatility), and timing of trades (number of price changes, autocorrelation
of durations between subsequent trades, heavy tail in their distribution, order-
side clustering).

Chapter 4, titled “A 2-step functional principal component analysis of intra-day
volatility trajectories”, has a markedly statistical nature and does not directly im-
plement the founding elements of complexity economics. However, it is meant
to empirically support the modelling attempts therein by providing empirical
evidence about some of the stylised facts that these models aim at reproducing.
Moreover, it shares with the complex systems mindset an intrinsically high-
dimensional character, ascribable to the realm of big-data analytics. We empir-
ically investigate intra-day volatility trajectories from two major stock markets
indices, the S&P500 and the EURONEXT 100, along the lines of recent develop-
ments in functional data analysis (FDA)· We propose a novel 2-step procedure
based on functional principal component analysis for reducing the dimension
of these large databases to a small set of curves. We furthermore propose a
model, based on a CAPM-inspired distinction between the market component
of the constituents’ volatility, namely the part that correlates with the index as a
whole, from the residual idiosyncratic component, that scores a good perform-
ance in predicting the original volatility trajectories. The analysis highlights the
importance of the so-called common idiosyncratic volatility, i.e. the presence of
a correlation structure across volatilities of distinct assets that persists after the
underlying CAPM ‘betas’ have been filtered out, in the aforementioned predic-
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tion exercise. Moreover, a visual inspection of the various functional principal
components involved in our procedure and their corresponding loading coeffi-
cients gives some insight about a few stylised facts that financial markets’ data
typically exhibit (e.g. U-shaped intra-day activity and volatility clustering), and
the patterns of international substitution and complementarity in place between
the American and European stock markets under study.

To the best of our knowledge, all the aforementioned research questions have
never been addressed by the incumbent literature.
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2
Asset prices and wealth dynamics in a financial

market with random demand shocks1

2.1. Introduction

In this chapter, we investigate the impact of random demand shocks on the
price dynamics of a risky asset. When a group of investors sell (buy) in a co-
ordinated fashion, the impact on prices depends on the size of the group. If the
group holds most of the supply of the asset, the latter sells at a large discount
(premium). Conversely, if the group with demand shocks is small, the market
is able to absorb their supply (demand) without a significant price adjustment.
Therefore, the price impact of demand shocks upon market clearing prices de-
pends on the relative wealth dynamics of different groups of traders. The pur-
pose of this chapter is to investigate the long-run equilibrium interplay between
wealth-driven market selection and the price impact of random demand shocks
on behalf of a group of traders.

In order to address this question, we develop a heterogeneous agent model
(HAM) mimicking a stylised financial economy in which a long-lived risky se-
curity and a risk-free bond are traded by a population of heterogeneous agents.
The HAMs literature has emerged in the last couple of decades with the aim at
modelling possible sources of endogenous risk, stemming from the mutual in-
teraction of heterogeneous and boundedly rational trading strategies. We refer

1This chapter is a joint work with Pietro Dindo (Department of Economics, Università
Ca’ Foscari Venezia, Italy). The manuscript is published as Dindo, Pietro and Jac-
opo Staccioli (2018). ‘Asset prices and wealth dynamics in a financial market with
random demand shocks’. Journal of Economic Dynamics and Control 95, pp. 187–210.
DOI: 10.1016/j.jedc.2018.08.009. Pietro Dindo acknowledges support from the Marie
Curie International Outgoing Fellowship PIOF-GA-2011-300637 within the 7th European
Community Framework Programme.
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2. Asset prices and wealth dynamics in a financial market with random demand shocks

to Hommes (2006) for a survey. Contributions close to ours in spirit, namely
that investigate the joint asset prices and wealth dynamics, include Chiarella
and He (2001), Chiarella et al. (2006), Anufriev et al. (2006), Anufriev and Bot-
tazzi (2010), Anufriev and Dindo (2010), Evstigneev et al. (2011), Anufriev et al.
(2012), and Palczewski et al. (2016). To the best of our knowledge, no contribu-
tion within the HAMs literature has provided sufficient conditions for the sur-
vival of traders exposed to demand shocks and their impact on the asset price
dynamics.

Within our exchange economy, investors’ demand for the bond absorbs only
a fraction of its total supply so that its price can be taken as fixed. Investors’
demand for the risky asset instead absorbs all of its supply. As a consequence,
traders are exposed, other than to the exogenous risk of its dividend payout,
also to the endogenous risk of possible variations in its price. If, for example,
a sizeable fraction of traders, as measured by aggregate wealth, decide to sell
the asset, they will be able to do so only at a lower price. Conversely, when
a small fraction of agents decides to sell the risky security, all of their demand
is absorbed by the market without a significant price variation. A symmetric
reasoning applies to the case in which a group of traders simultaneously decide
to buy more of the risky asset. We assume that two groups of traders are active
in the market. The first group is subject to joint demand shocks, which we model
as an exogenous Markov process that moves their demand between two levels,
either a high fraction or a low fraction of wealth to be invested in the risky asset.
The second group is not vulnerable to demand shocks and maintains a constant
position in the risky asset.

Assuming joint demand shocks that are modelled as an exogenous stochastic
process, our contribution is also linked to the concept of noise traders and to
the impact of noise unrelated to the exogenous dividend process, as put forth
by Black (1986). This idea has been incorporated by different streams of liter-
ature to investigate the effect on market dynamics of portfolio decisions that
are not strictly based on rational expectations (cf. e.g. DeLong et al., 1990,
1991). However, the HAMs literature has traditionally modelled noise traders
with strategies driven by deterministic feedback mechanisms from realised
market outcomes, mainly in terms of chartist (i.e. trend extrapolating) versus
fundamentalist (i.e. mean reverting) rules (see e.g. Chiarella, 1992, Brock and
Hommes, 1998). Little has been done so far to study the interaction between
strategies incorporating a truly random component that continually perturbs
the system away from equilibrium. A notable exception is Chiarella et al. (2011),
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2. Asset prices and wealth dynamics in a financial market with random demand shocks

investigating a traditional fundamentalists vs. chartists asset pricing model in
which the fundamental price follows a random walk process. Along the same
lines, we extend the incumbent HAMs literature by analysing the equilibrium
effect of a stochastic portfolio.

There might be multiple reasons for these shocks to occur synchronously
within a group: all traders’ demand is updated by looking at the same, pos-
sibly noisy, signals, e.g. an exogenous source of sentiment; alternatively, all these
investors have the same institutional or financial constraints, e.g. they are all
hedge funds who are overly exposed to the risky asset and might need to re-
duce their position due to new regulations or an industry shock.

As we shall discover, the most interesting scenario is the one in which the
group that is vulnerable to demand shocks also acts more aggressively on the
market, in the sense of committing to hold, on average, a larger share of wealth
in the risky security, relative to the other group. On the one hand, taking more
fundamental risk brings a positive reward since riskier securities carry higher
expected excess-returns (when looking only at the exogenous component of
risk). On the other hand, a portfolio which is exceedingly skewed towards the
risky security also turns out to be vulnerable to losses due to a buy-high and
sell-low phenomenon. In particular, when these aggressive traders sell and their
market impact is high, they have to endure a substantial haircut. We show that
the gain that follows a joint purchase is not large enough to completely offset
the loss following a joint sale. We are able to analytically investigate this trade-
off and provide sufficient conditions for survival of all traders and the ensuing
endogenous asset prices fluctuations in equilibrium. In particular, we define
the transmission of demand shocks onto market prices as the pass-through. This
term, borrowed from signal processing, is already established in other fields of
the economic discipline to denote the extent to which a certain signal (in our
case, the stochastic process driving the demand shocks) is incorporated into an-
other (in our case, the market clearing price of the asset).2

From a mathematical point of view, the model outlined above can be de-
scribed by a random dynamical system. The state variables are the agents’ re-
lative wealth, the risky asset’s return, and the dividend yield. The stochastic
component plays the role of the joint demand shocks. Our system cannot be
properly studied by perturbing its deterministic skeleton; since demand shocks

2Examples include how much of the foreign exchange-rate dynamics is reflected onto imported
goods prices (exchange-rate pass-through), or how much of a tax levied on, say, producers
is shifted to consumers (tax incidence pass-through).
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constitute the main driver of the dynamics, their effect cannot be switched off
without loss of generality. Technically, we study the local stability of the under-
lying deterministic and random fixed points.

Our results are as follows. From the aforementioned stability analysis, it is
possible to distinguish three possible long-run scenarios. In particular, we shall
provide sufficient conditions under which either the traders with a constant ex-
posure dominate, i.e. there is no pass-through, or the traders subject to demand
shocks dominate, i.e. there is maximal pass-through in equilibrium. A first find-
ing is that the constant portfolio can systematically earn a higher return and
eventually dominate the economy, even if it consists of a position which is on
average strictly less than that of the stochastic one. The most interesting out-
come from an economic standpoint arises when both the aforementioned polar
equilibria are simultaneously unstable and neither group dominate. When this
is the case, the extent of the pass-through becomes endogenous and is coupled
with the agents’ relative wealth dynamics. We show that the emergence of en-
dogenous pass-through, due to long-run heterogeneity of traders either subject
or immune to demand shocks, arises as a generic outcome, i.e. it occurs for a
non-degenerate region of the parameters space.

Overall, the pass-through of demand shocks into market prices brings an in-
trinsic penalty for stochastic traders due to the aforementioned effect of buying
high and selling low. In other words, we find that a riskier portfolio may system-
atically fail to outperform a relatively safer one, should the former be subject to
demand shocks. The extent of such failure is tightly linked to the rate of growth
of the dividend of the risky asset. Intuitively, this parameter balances the rel-
ative importance, for the stochastic traders’ accumulation of wealth, of jumps
in the risky asset’s price when switching between high and low investment,
and of dividend payments. Depending on its value, we can distinguish two re-
gimes of long-run heterogeneity, and thus of endogenous pass-through. When
the dividend grows quickly, cœteris paribus, the buy-high and sell-low negat-
ive effect is quickly overcome by the stream of dividend payments favouring
those traders that are the most exposed in the risky asset. Conversely, when the
growth rate is smaller than a certain threshold, both trader types may co-exist
even when constant traders always invests a strictly lower fraction of wealth in
the risky asset, compared to stochastic ones. As we shall see, both analytically
and numerically, losses on behalf of stochastic traders can be, on average, so
severe that both groups of agents survive.

The chapter is organised as follows. The financial model is outlined in the
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next section, where the underlying random dynamical system governing the
economy is derived. Then, Section 2.3 analyses the representative agent re-
striction, namely the no pass-through case and the maximal pass-through case.
These two extreme cases are useful for the analysis of the full model, presen-
ted in Section 2.4. Here, sufficient conditions for all possible long-run outcomes
and the related emergence of endogenous pass-through are obtained. Section 2.5
provides numerical simulation evidence of some interesting scenarios generated
by our model and the sensitivity analysis for its relevant parameters. Finally,
Section 2.6 concludes and proposes conceivable extensions to our framework.

2.2. The model

Our framework is common to a number of contributions in the HAMs literature,
in particular Anufriev et al. (2006) and Anufriev and Dindo (2010). We first lay
down the general market model and then introduce our specific assumptions
regarding demand shocks in Section 2.2.1.

Consider a financial economy where a long-lived risky stock and a risk-free
bond are traded in discrete time t ∈N ∪ {0}. The amount of circulating shares
of the risky security is constant, while the supply of the bond is perfectly elastic.
The market is populated by an arbitrarily large number of traders divided in two
groups indexed by i = 1,2. The detailed behaviour of each group is described
shortly afterwards.

Before trade at time t starts, each trader in group i chooses the fraction xi,t

of her current wealth Wi,t to be invested in the risky asset. The latter pays a
dividend Dt at the beginning of each period. The residual fraction of wealth,
1− xi,t, is allocated to bond purchase, yielding a constant risk-free rate of return
r f > 0. The current level of individual wealth for group i depends on the past
trading decision at time t − 1, i.e. on the relative allocation of wealth between
the risky and the risk-free investment, on the amount of dividend paid Dt, and
on security prices. The price of the risky asset Pt is determined in equilibrium
by equating aggregate demand and aggregate supply. Both the price and the
dividend are expressed in terms of the bond’s price, serving as the numéraire,
conventionally normalised to 1 in every period. The evolution of wealth for the
agents within group i reads

Wi,t = (1− xi,t−1)Wi,t−1(1 + r f ) + xi,t−1Wi,t−1

(
Pt + Dt

Pt−1

)
. (2.2.1)

The economy runs through a series of temporary equilibria in which the market
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clearing condition is satisfied. By normalising, without loss of generality, the
supply of the risky asset to 1, market clearing condition amounts to

Pt = ∑
i=1,2

xi,tWi,t. (2.2.2)

The system of eqs. (2.2.1) and (2.2.2) describes a growing economy at a rate that
is in part deterministic, corresponding to the risk-free return r f , and in part de-
pendent on the realised price and dividend. It is easy to check this by summing
the individual wealth over all the agents

Wt = ∑
i=1,2

Wi,t = Wt−1(1 + r f ) +
[
Pt + Dt − Pt−1

(
1 + r f

)]
. (2.2.3)

It is therefore useful to get rid of the constant growth component r f and define
the rescaled variables

wi,t =
Wi,t

(1 + r f )t , pt =
Pt

(1 + r f )t , dt =
Dt

(1 + r f )t , (2.2.4)

and the associated rescaled model
pt = ∑i=1,2 xi,twi,t

wi,t = wi,t−1

[
1 + xn,t−1

(
pt

pt−1
− 1 + et

)] , (2.2.5)

where et stands for the (rescaled) dividend yield, defined as

et :=
Dt

Pt−1(1 + r f )
=

dt

pt−1
. (2.2.6)

Note that in the first equation of system (2.2.5) the current price level pt appears
both in the LHS and in the RHS, as determinant of the level of wealth wi,t. Sub-
stituting the second equation into the first and solving for pt yields the explicit
price dynamics

pt = pt−1
∑i=1,2 wi,t−1xi,t [1 + xi,t−1(et − 1)]

∑i=1,2 wi,t−1xi,t−1(1− xi,t)
. (2.2.7)

It will prove useful for the subsequent analysis to normalise each group’s wealth
by total wealth. Computing the wealth share ϕi,t we obtain

ϕi,t :=
wi,t

∑i=1,2 wi,t
= ϕi,t−1

1 + xi,t−1(rt + et)

1 + (rt + et)∑i=1,2 ϕi,t−1xi,t−1
, (2.2.8)

where the last equality comes from the second equation of system (2.2.5), and
rt denotes the capital gain (in excess of the risk-free return). It is immediate
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to reformulate the latter in terms of individual wealth shares from eqs. (2.2.7)
and (2.2.8) as follows:

rt :=
pt

pt−1
− 1 =

∑i=1,2 ϕi,t−1 [xi,t(1 + etxi,t−1)− xi,t−1]

∑i=1,2 ϕi,t−1xi,t−1(1− xi,t)
. (2.2.9)

The return depends on the wealth-weighted average of the relative portfolio po-
sition of each group between the current and the preceding period, and on the
dividend yield process. Regarding the latter, in the past literature a few distinct
practices have emerged. Anufriev and Bottazzi (2010), Anufriev et al. (2006) and
Chiarella and He (2001) all assume an endogenous dividend dynamics such that
the dividend yield is an i.i.d. process; this directly implies that any change in the
price of the risky security causes an essentially instantaneous adjustment in the
paid dividend of an identical magnitude. Evstigneev et al. (2011) instead anchor
the dividend to the aggregate wealth in the economy. As opposed to linking the
dividend to the endogenous dynamics of the economy, Chiarella et al. (2006) and
Anufriev and Dindo (2010) implement an exogenously growing dividend pro-
cess with i.i.d. rate of growth. We follow the latter approach but for the sake of
simplicity, in view of the already non-trivial effect of random demand shocks,
we opt for a fully deterministic process. Switching the dividend noise off al-
lows us to focus on traders’ behaviour as the only source of randomness in the
model.3 That said, we make the following assumption:

Assumption 2.1. The paid dividend grows geometrically at a rate g > 0

dt = dt−1(1 + g). (2.2.10)

We deliberately restrict to a (strictly) positive rate of growth since our focus is
on the selective capacity of markets when risky assets, in the absence of de-
mand shocks, yield a higher coupon with respect to the bond (at least on av-
erage). Strictly speaking, our Assumption implies that the risky asset has a
higher return whenever its price grows at a constant rate. This is the reason
why the incumbent literature (see e.g. Anufriev and Dindo, 2010) finds that fit-
test strategies are those most skewed towards the risky asset. However, as we
shall see, the presence of random demand shocks might hinder such excess re-
turns.

In terms of the dividend yield, Assumption 2.1 translates into

et =
dt

pt−1
= et−1

1 + g
1 + rt−1

. (2.2.11)

3Within a conceivable extension of the present model featuring a stochastic dividend dynamics,
it would indeed be interesting to study the correlation between the two processes.
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It is apparent in eq. (2.2.11) that a negative feedback coming from the past real-
ised return negatively affects the current level of the yield. Eqs. (2.2.8), (2.2.9),
and (2.2.11) together describe the overall dynamics of the wealth shares, the rate
of return, and the dividend yield. They can be summarised in the following 3-
dimensional system:

ϕ1,t = ϕ1,t−1
1 + x1,t−1(rt + et)

1 + (rt + et)∑i=1,2 ϕ1,t−1x1,t−1

rt =
∑i=1,2 ϕi,t−1 [xi,t (1 + etxi,t−1)− xi,t−1]

∑i=1,2 ϕi,t−1xi,t−1 (1− xi,t)

et = et−1
1 + g

1 + rt−1

. (2.2.12)

Note that since by definition ∑i=1,2 ϕi,t = 1, the wealth share of the second group
can be residually derived as ϕ2,t = 1− ϕ1,t.

2.2.1. Trader behaviour

The specification of traders’ investment choice xi,t, i = 1,2, closes the model.
We restrict investment rules to those of a fixed-mix type (see Mulvey and Kim,
2010). This class of strategies ensure that at any point in time the fraction of
wealth invested in each of the underlying assets is kept at a constant level. As
opposed to the buy-and-hold rule, when a fixed-mix strategy is adopted the
trader rebalances her portfolio to keep the weight xi,t of the risky security un-
changed over time by selling (respectively, buying) the asset if its price has in-
creased (respectively, decreased). Fixed-mix strategies differ from those typic-
ally embedded in other HAMs in that the weight of each asset is insensitive to
realised market outcomes such as past returns or dividend yields. We make this
assumption for analytical tractability purposes.

In order to be economically meaningful, the price of an asset supplied in fi-
nite amount needs to be, at the very least, strictly positive. A sufficient con-
dition thereof, stemming from eq. (2.2.7) and widely adopted in the literature,
coincides with preventing each trader from short-selling or leverage-buying the
risky asset, i.e. requiring xi,t ∈ (0,1), i = 1,2. Note that this condition is not
necessary, since the restriction only needs to apply to the aggregate market-
portfolio. Note also that this assumption does not stand at odds with empirical
evidence: for instance, studying a sample of U.S. domestic equity funds in the
1994–2000 period, Almazan et al. (2004) show that short-sale restrictions are not
exceptional, due to both regulatory and self-imposed constraints.
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xu xd1− πd

πd

1− πu

πu

Figure 2.1.: The Markov process {xt}.

The first group of traders is characterised by a constant fraction x1,t = x. We
shall name this group the constant group and denote it by C. The second group
of traders, instead, jump back and forth between two distinct levels of exposure,
x2,t = xu or x2,t = xd, with xu < xd, at random times. Hence, the portfolio of
traders in such group consists of a stochastic variable with two admitted values.
In particular, we model the transition between these two levels by an exogenous
Markov process. We shall name this group the stochastic group and denote it by
S.

The following Assumption fully summarises the behaviour of the two groups
of agents.

Assumption 2.2. Each trader in group C adopts the portfolio rule x ∈ (0,1) in every
period.
Each trader in group S adopts the portfolio rule xt ∈ {xu, xd} according to a Markov
process {xt, t ∈N}, characterised by the following transition probability matrix:

P =


xu xd

xu 1− πd πd

xd πu 1− πu

, (2.2.13)

with

0 < xd < xu < 1, πu > 0, πd > 0. (2.2.14)

Given transition probabilities P , we name P the induced probability measure on sets of
sequences {xt, t ∈N} ∈

�
∞{xu, xd}.

The Markov process {xt}, also pictured in Fig. 2.1, constitutes the driver of de-
mand shocks. The transition probability πd determines the probability of suf-
fering a negative shock, conditional on being exposed to the risky asset at a
‘up’ level. The transition probability πu determines the probability of suffering
a positive demand shock, conditional on being exposed to the risky asset at a
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‘down’ level. Given transition probabilities, the average duration of a ‘up’ and
a ‘down’ level of investment on a given realisation {xt}∞

t=0 equals (πd)−1 and
(πu)−1, respectively.
In terms of the two groups of traders just outlined, the 3-dimensional random
dynamical system is the composition of group S stochastic demand {xt} and
of the four maps Fxt−1,xt : D→D, each defined over the phase space D = ∆×
(−1,+∞)×R++ and given by

Fxt−1,xt :



ϕt = ϕt−1
1 + xt−1 (rt + et)

1 + (rt + et) [ϕt−1xt−1 + (1− ϕt−1)x]

rt =
ϕt−1 [xt (1 + etxt−1)− xt−1] + (1− ϕt−1)etx2

ϕt−1xt−1 (1− xt) + (1− ϕt−1)x(1− x)

et = et−1
1 + g

1 + rt−1

, (2.2.15)

where we adopt the convention that ϕt denotes the time-t aggregate wealth
share of traders within group S, i.e.

ϕt :=
wS,t

wC,t + wS,t
, (2.2.16)

so that 1− ϕt residually stands for the time-t aggregate wealth share of traders
within group C.

2.3. Representative trader economies

Let us first consider an economy populated by traders of the same type, either
constant or stochastic. This case is insightful since it allows to properly dis-
entangle the features of the long-run dynamics implied by each behavioural
specification from those stemming from the market interaction induced by de-
mand shocks. The resulting reduced system is lower dimensional with respect
to (2.2.15) since the underlying wealth share ϕt is fixed to zero (respectively,
one) whenever we consider an economy populated uniquely by constant (re-
spectively, stochastic) traders.

2.3.1. The economy with a constant trader: no pass-through

When the economy is populated only by constant traders, demand shocks do
not play a role and there is no pass-through. Imposing ϕt = 0 ∀t, the market
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dynamics F in (2.2.15) is fully deterministic and reduces to F̃C : D̃ → D̃, with
D̃ = (−1,+∞)×R++, given by

F̃C :


rt = et

x
1− x

et = et−1
1 + g

1 + rt−1

. (2.3.1)

The following Proposition characterises the asymptotic dynamics of the eco-
nomy.

Proposition 2.1. The market dynamics (2.3.1) admits a unique, globally stable, fixed
point

C̃=

(
g , g

1− x
x

)
. (2.3.2)

Proof. See Appendix A.1.

At the fixed point, the price of the risky security grows, proportionally to the
dividend, at a rate of g. Intuitively, since the asset is in finite constant supply,
its price has to fully account for the new wealth injected by means of dividend
payments. From the first equation of system (2.3.1), since the portfolio rule x is
itself constant, the dividend yield level must adjust accordingly.

The existence of a globally stable value of dividend yield and return can be
easily understood by looking exclusively at the dynamics of the dividend yield.
In fact, by lagging and substituting the first equation into the second, it is easy
to further reduce system (2.3.1) to a 1-dimensional map f̃ C : R++→R++ solely
in terms of the dividend yield:

et = f̃ C(et−1) = et−1
1− x

1 + x(et−1 − 1)
(1 + g). (2.3.3)

Map (2.3.3) admits a unique non-trivial (i.e. strictly positive) fixed point

e∗ = g
1− x

x
. (2.3.4)

Substituting e∗ into the first equation of system (2.3.1) yields the equilibrium
return r∗ = g. The fixed point is globally stable because for g > 0, as we assume,
map (2.3.3) is increasing, concave, with derivative greater than unity in e = 0
and smaller than unity in e∗.4

4For the analysis of the g ≤ 0 case we refer the reader to Anufriev and Dindo (2010, Section 3.1).
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2.3.2. The economy with a stochastic trader: maximal
pass-through

When the economy is populated only by stochastic traders, demand shocks do
play an essential role and pass-through is maximal. Imposing ϕt = 1 ∀t, the
market dynamics F in (2.2.15) still depends on the last two investment levels.
For each pair (xt−1, xt) ∈

�
2{xu, xd}, the returns and dividend yield dynamics

can be written as F̃S
xt−1,xt

: D̃ → D̃, with D̃ = (−1,+∞)×R++, given by

F̃S

xt−1,xt
:


rt =

xt (1 + etxt−1)− xt−1

xt−1 (1− xt)

et = et−1
1 + g

1 + rt−1

. (2.3.5)

The returns and dividend yield dynamics can be characterised by studying the
random fixed point of (2.3.10), as defined in the following. As a matter of nota-
tion, we shall use x−1 and x−2 to denote the 1-period and 2-period lagged values
of a generic realisation x of {xt}.

Definition 2.1. Call D̃∗ the space of all random vectors (R∗, E∗) :
�

2{xu, xd} → D̃.
A random fixed point of system (2.3.5) is a random vector (R∗, E∗) ∈ D̃∗ such that
(R∗, E∗)x−1,x = F̃x−1,x(R∗, E∗)x−2,x−1 , for all (x−2, x−1) and (x−1, x) in

�
2{xu, xd}.

The following Proposition shows that, in an economy where all traders are sub-
ject to demand shocks, there exists a globally stable random fixed point.

Proposition 2.2. For every realisation of the Markov process {xt}, the market dynam-
ics (2.3.5) admits a unique (random) fixed point

S̃=

(
g

x(1− x−1)

x−1(1− x)
+

x− x−1

x−1(1− x)
, g

1− x−1

x−1

)
, ∀(x−1, x) ∈

�
2

{xu, xd}.

(2.3.6)

Moreover, S̃ is globally stable, i.e.

lim
t→∞
F̃S

x−1,x

(
F̃S

xt,x−1
◦ F̃S

xt−1,xt
◦ · · · ◦ F̃S

x0,x1
(R0, E0)

)
= (R∗, E∗)x−1,x, (2.3.7)

for every sequence {xt}, for all (x−1, x) ∈
�

2{xu, xd}, and for every initial condition
(R0, E0) ∈ D̃.

Proof. See Appendix A.2.
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rS = rud
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rS = rdu
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uu xu
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F̃S

dd
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F̃S

du
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F̃S

udxd
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ddxd
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Figure 2.2.: (a): The four states associated with random fixed point S̃ and
the transition between them depending on the realisation of the
stochastic process {xt}. (b): The four realisations of the stochastic
map f̃xt−2,xt−1 and the bisector line (dashed).

Random fixed point S̃ consists of 4 states (R∗, E∗)S̃x−2,x−1
∈ D̃, associated to all

possible couples (x−2, x−1) ∈
�

2{xu, xd}. The four maps F̃S
x−1,x, associated to

all possible couples (x−1, x) ∈
�

2{xu, xd}, govern the transition between them,
as depicted in Fig. 2.2(a). In particular, there exist:

� three equilibrium values of the return

rS̃(x−2, x−1) =



g if x−2 = x−1

rud = g
xd(1− xu)

xu(1− xd)
− xu − xd

xu(1− xd)
if (x−2, x−1) = (xu, xd)

rdu = g
xu(1− xd)

xd(1− xu)
+

xu − xd

xd(1− xu)
if (x−2, x−1) = (xd, xu)

,

(2.3.8)

� two equilibrium values of the dividend yield

eS̃(x−2, x−1) =


eu = g

1− xu

xu if x−2 = xu

ed = g
1− xd

xd if x−2 = xd
. (2.3.9)

In order to grasp an intuition about the existence of (and the convergence to)
random fixed point S̃, it is instructive to rewrite the dynamics exclusively in
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terms of dividend yields. By lagging and substituting the first equation into the
second, it is easy to further reduce system (2.3.5) to a 1-dimensional stochastic
map f̃ Sxt−2,xt−1

: R++→R++ solely in terms of the dividend yield:

et = f̃ Sxt−2,xt−1
(et−1) = et−1

xt−2(1− xt−1)

xt−1 [1 + xt−2(et−1 − 1)]
(1 + g). (2.3.10)

Map (2.3.10), pictured5 in Fig. 2.2(b), depends on both past realisations xt−1 and
xt−2 of the demand Markov process {xt}. When these two realisations are equal,
such as (xu, xu) or (xd, xd), map f̃ Sxt−2,xt−1

in (2.3.10) corresponds to map f̃ C in
(2.3.3) when, respectively, x = xu or x = xd. Analogously, the dividend yield
of the random fixed point, eu or ed, corresponds to e∗ in (2.3.4) when, respect-
ively, x = xu or x = xd. Note how a higher fraction of wealth invested in the
risky asset corresponds to a higher pressure on risky asset prices and thus to a
lower dividend yield. A shock on demand, e.g. from xu to xd, makes the sys-
tem evolve according to map f̃ud and moves the dividend yield from eu to ed.
Since, by assumption, no constant trader is present, the excess supply of the
risky asset when the shock hits is neither absorbed nor mitigated, and the pass-
through of demand shocks onto market price is maximised. The price of the
risky asset has to adjust for the continually injected new wealth by means of di-
vidend payments (in analogous fashion as for fixed point C̃), and for the jumps
in the market portfolio induced by demand shocks. The opposite occurs when
demand jumps from xd to xu.

Given the dividend yield and investment fractions, the first equation in (2.3.5)
provides the corresponding value of the return. A closer inspection of eqs. (2.3.8)
and (2.3.9) reveals that the following relations hold:

rud < g < rdu. (2.3.11)

When x−1 = x = xi, i ∈ {u,d}, the dynamics temporarily resembles that of fixed
point C̃. Irrespectively of the prevailing portfolio fraction, the return matches
the dividend growth rate g for the aforementioned reason. Conversely, the re-
turn is rud < g whenever the demand shock is negative and stochastic traders
pass from a high to a low investment in the risky asset. The opposite occurs
when the demand shock is positive, and rdu > g.

When a negative demand shock hits, the capital gain rud may even be negat-

5Fig. 2.2(b) is intended as a qualitative picture; it is not generally true that lime−1→0+ f̃ ′du > 1
since the slope of the map in fact depends on the underlying value of g.
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ive. In particular it holds

rud < 0 ⇐⇒ g < ḡ =
xu − xd

xd(1− xu)
. (2.3.12)

The threshold ḡ below which rud is negative inversely depends on the mag-
nitude of the portfolio shift in terms of wealth, i.e. on the difference xu− xd, and
is influenced by the overall position of xu and xd within the unit simplex. For a
mild drop of around 1% of wealth invested in the risky security, min(ḡ) ≈ 0.04
(and note that the function ḡ(xu, xd) is sharply convex). When a more economic-
ally meaningful deviation occurs, say xu − xd = 0.1, then min(ḡ) ≈ 0.49, mean-
ing that a substantial dividend growth rate is required for rud to be positive;
such a high rate is clearly unsustainable in the long run and at sharp odd with
actual markets evidence. Therefore, in most conceivable cases, in response to a
downward portfolio shock, stochastic traders have to ‘fictionally’ pay a signi-
ficant premium in order to immediately sell part of their holdings. Conversely,
during an upward portfolio shift, stochastic traders exert an ab-normal pressure
on the demand of the risky asset, captured in turns by a higher realised return
rdu > g, eventually driving the market-clearing price upwards. As we shall see,
both movements are mitigated by the presence of constant traders, as long as
the latter survive in the long-run.

Proposition 2.2 not only characterises the random fixed point but also shows
that it is globally stable, implying that the dynamics of dividend yield and re-
turn converges to the values in (2.3.8) and (2.3.9) for all possible initial values.
The following Corollary draws the implications of convergence to random fixed
point S̃ and of the dynamics of stochastic traders demand {xt} on the dynamics
of returns and dividend yields in the long-run.

Corollary 2.1. Given the Markov process portfolio rule {xt, t ∈N} as per Assump-
tion 2.2, at random fixed point S̃ returns and dividend yields evolve according to an
irreducible, time-homogeneous, Markov chain characterised by the following transition
probability matrix:

P̃ =



(g, eu) (rud, ed) (rdu, eu) (g, ed)

(g, eu) 1− πd πd 0 0

(rud, ed) 0 0 πu 1− πu

(rdu, eu) 1− πd πd 0 0

(g, ed) 0 0 πu 1− πu

. (2.3.13)
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All states are positive-recurrent and there exists a unique invariant distribution π̃ sat-
isfying the condition π̃ = π̃P̃ . In particular it holds:

π̃ =

[
πu(1− πd)

πu + πd ,
πuπd

πu + πd ,
πuπd

πu + πd ,
πd(1− πu)

πu + πd

]
. (2.3.14)

2.4. Heterogeneous traders economy

We can now proceed with studying the effect of demand shocks in an economy
with heterogeneous traders, the latter partitioned into constant group C and
stochastic group S. To this aim, we need to investigate the asymptotic survival
of both groups. To this purpose, we shall define the following Terminology.

Terminology. Group i ∈ {C, S} is said to

� survive if its asymptotic wealth-share is strictly positive P-almost surely, i.e. if

P

{
lim
t→∞

sup ϕn,t > 0
}
= 1;

� vanish if its asymptotic wealth-share is zero P-almost surely, i.e. if

P

{
lim
t→∞

sup ϕn,t = 0
}
= 1;

� dominate if its asymptotic wealth-share is one P-almost surely, i.e. if

P

{
lim
t→∞

inf ϕn,t = 1
}
= 1.

We are interested in characterising all the possible long-run outcomes. A first
possibility is that constant traders hoard all aggregate wealth in the long-run,
so that demand shocks become negligible. In other words, should we find that
the stochastic group vanishes asymptotically, then the impact of demand shocks
would only be transient. In order to account for this outcome, we introduce the
concept of deterministic fixed point of a random dynamical system.

Definition 2.2. A deterministic fixed point of system (2.2.15) is a vector (ϕ∗,r∗, e∗) ∈
D such that (ϕ∗,r∗, e∗) = Fx−1,x(ϕ∗,r∗, e∗) for all (x−1, x) in

�
2{xu, xd}.

Alternatively, the stochastic trader could dominate. To study this outcome, we
adapt the concept of random fixed point given for homogeneous traders eco-
nomies in Definition 2.1 to the current heterogeneous traders set-up, leading to
the following definition.

Definition 2.3. Call D∗ the space of all random vectors (Φ∗, R∗, E∗) :
�

2{xu, xd} →
D. A random fixed point of system (2.2.15) is a random vector (Φ∗, R∗, E∗) ∈ D∗ such
that (Φ∗, R∗, E∗)x−1,x = Fx−1,x(Φ∗, R∗, E∗)x−2,x−1 , for all (x−2, x−1) and (x−1, x) in�

2{xu, xd}.
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It is possible to show that, under the stated assumptions, system (2.2.15) admits
exactly two fixed points, one for each of the the aforementioned types.6

Proposition 2.3. System (2.2.15) admits:

� a deterministic fixed point C in which the constant group dominates and the
stochastic group vanishes

C=

(
0, g , g

1− x
x

)
, (2.4.1)

� a random fixed point S in which the stochastic group dominates and the constant
group vanishes

S=

(
1, g

x(1− x−1)

x−1(1− x)
+

x− x−1

x−1(1− x)
, g

1− x−1

x−1

)
. (2.4.2)

Proof. See Appendix A.3.

Importantly for our purposes, at fixed point C demand shocks do not pass
through to market price, for the fraction of wealth (and therein of risky asset)
detained by traders who are subject to these shocks is negligible. On the con-
trary, at fixed point S demand shocks do lead to maximal pass-through, since
now it is the fraction of traders who are not subject to demand shocks that is
negligible. In what follows we shall investigate the convergence to this two
scenarios as well as the case in which both groups of agents survive. In the lat-
ter case, the pass-through is endogenous in that its extent is directly linked to
the traders’ relative wealth dynamics.

In order to characterise the stability of both fixed points,7 we restrict to their
local asymptotic analysis for tractability reasons. Let us define ρi

∣∣
j as the expec-

ted geometric (gross) growth rate of the wealth of group i when the system is at
fixed point j, with i, j ∈ {C,S}. The following Lemma is useful.

Lemma 2.1. The local asymptotic stability of fixed point j ∈ {C,S} is entirely determ-
ined by the relative values of ρS

∣∣
j and ρC

∣∣
j.

Proof. See Appendix A.4.

Since the relative wealth process is multiplicative, the geometric expected value
of growth rates ultimately determines the relevant long-run outcome.

6With an abuse of notation, we denote by i ∈ {C,S} the fixed point in which group i itself
dominates.

7For random dynamical systems, a fixed point (either deterministic or random) is asymptot-
ically stable when, for P-almost all sequences of random shocks {xt, t ∈ N}, the path of
states generated by the composition of maps F̃S

xt−1,xt ◦ · · · ◦ F̃
S
x0,x1

converges to it, provided
the initial state is chosen close enough.
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2.4.1. Su�icient conditions for no endogenous pass-through

Here we investigate the conditions that prompt the constant group to domin-
ate in the long-run, and consequently the stochastic group, together with their
random component of aggregate demand, to vanish. By applying Lemma 2.1,
the following Proposition provides sufficient conditions for the local asymptotic
stability of fixed point C.

Proposition 2.4. If parameters x, xu, xd, g, πu, and πd are such that the following
condition holds

(
1 + g

xu

x

) πu

πu+πd
(

1 + g
xd

x

) πd

πu+πd

= ρS
∣∣
C
< ρC

∣∣
C
= 1 + g, (2.4.3)

then fixed point C is locally asymptotically stable, whereas if ρS
∣∣
C
> ρC

∣∣
C

then C is
unstable.

Proof. See Appendix A.5.

By restricting to a local analysis, we are evaluating the conditions for the
stochastic group to survive when returns are determined by constant traders.
In this case the stochastic traders hold an infinitesimal fraction of wealth and
demand shocks are perfectly absorbed by the market. In other words, the pass-
through is absent. The same happens for price increases that follow the recovery
of the stochastic traders’ positions. No such price upsurge occurs because the
fraction of stochastic traders triggering them is negligible. Under these condi-
tions, if x ≥ xu then the constant traders enjoy a higher growth for all realisations
of the shock. Inequality (2.4.3) is always satisfied and the fixed point is locally
asymptotically stable. Conversely, if x ≤ xd then the constant traders experience
a lower growth with probability one, and the fixed point is unstable. In a locally
asymptotically stable deterministic fixed point the survivor group must invest a
higher share of wealth in the risky asset with respect to the vanisher. Intuitively,
were it not the case, for the risky security yields a higher return with respect
to the bond, an arbitrarily small redistribution in favour of the vanisher would
bring the system further and further away from the initial fixed point, implying
the latter is unstable. The results presented here are the stochastic generalisation
of those already present in the literature (cf. Anufriev and Dindo, 2010, Propos-
ition 5.2) regarding so-called ‘fundamentalist’ rules.

The interesting case is when xd < x < xu holds. Whenever x−1 = xu the
wealth share ϕ of the stochastic traders increases; conversely, whenever x−1 =
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xd, ϕ shrinks. Cœteris paribus, the larger πd, or the smaller πu, the higher the
likeliness that condition (2.4.3) is satisfied. In general, it is not possible to obtain
a closed form solution of the inequality in (2.4.3) in terms of x since ρS

∣∣
C

is not
algebraic. We are only able to analytically work out the following Special case.

Special case. πu = πd

When the transition probabilities coincide, implying that the average duration of high
investment equals that of low investment, inequality (2.4.3) translates into the following
algebraic condition in terms of the constant trader’s portfolio rule:

x >
xu + xd

2
−

(1 + g)(xu + xd)−
√

4gxuxd(2 + g) +
(
xu + xd

)2

2(2 + g)

=
xu + xd

2
− h(g),

with h(g) ≥ 0, h(0) = 0, h′(g) > 0.

(2.4.4)

The last equality shows that the RHS of inequality (2.4.4) converges from below to the
simple arithmetic average between xu and xd, as g approaches zero.

This result implies that there would indeed be loss of generality should one
adopt the so-called deterministic skeleton approach and substitute the {xt}
process with its expected value.8 The noise component incorporated into the
stochastic traders’ portfolio brings a detrimental effect to their own survival, at
least in the πu = πd case, since the constant traders can dominate even invest-
ing a portfolio fraction x that is strictly lower than the average of the stochastic
ones’. The following Proposition provides a sufficient condition for the domin-
ance of the constant trader even when πu , πd.

Proposition 2.5. If x ≥ E[xt] then fixed point C is locally asymptotically stable.

Proof. See Appendix A.6.

Importantly, for demand shocks to pass through onto market prices, the
stochastic traders must be, on average, more aggressive than the rest of the
traders.

Finally, it is possible to show that there always exists exactly one value x′ of x
where a bifurcation occurs. Moreover, such value is bounded from below by xd

and from above by xu.

8The expected value is computed according to the invariant distribution of the transition mat-
rix in eq. (2.2.13) that in this special case reads

[
1
2 , 1

2

]
.
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Proposition 2.6. ∃! x′ ∈ (0,1) such that fixed point C is locally asymptotically stable
∀ x > x′ and is unstable ∀ x < x′. Moreover, the following relation holds:

xd < x′ < E[xt] < xu. (2.4.5)

Proof. See Appendix A.7.

2.4.2. Su�icient conditions for maximal pass-through

Here we investigate the conditions that prompt the stochastic group to dom-
inate, so that demand shocks, in the long run, entirely pass through to market
prices. Following Corollary 2.1, we derive the condition for local asymptotic
stability of fixed point S in the following Proposition.

Proposition 2.7. If parameters x, xu, xd, g, πu, and πd are such that the following
condition holds[

1 +
gx
xu

] πu(1−πd)
πu+πd

·
[

1 + g
x
xu +

(xu − x)(xu − xd)

xu(1− xu)

] πuπd

πu+πd

·
[

1 + g
x
xd +

(x− xd)(xu − xd)

xd(1− xd)

] πuπd

πu+πd

·
[

1 +
gx
xd

] πd(1−πu)
πu+πd

= ρC
∣∣
S
< ρS

∣∣
S
= 1 + g,

(2.4.6)

then fixed point S is locally asymptotically stable, whereas if ρC
∣∣
S

> ρS
∣∣
S

then S is
unstable.

Proof. See Appendix A.8.

Similar to the previous case regarding fixed point C, the eigenvalue ρC
∣∣
S

is non-
algebraic and therefore a closed form solution in terms of of x is in general un-
feasible. The following Proposition derives sufficient conditions regarding sta-
bility and instability of fixed point S in terms of the constant group portfolio
rule.

Proposition 2.8. Given πu, πd, xu and xd, a sufficient condition for local asymptotic
stability of fixed point S is

x ≤ xd ∧ g > g̃ :=
xu − xd

1− xu . (2.4.7)

Conversely, a sufficient condition for instability of fixed point S is

x ≥ xu (2.4.8)
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Proof. See Appendix A.9.

The first condition of Proposition 2.8 states that the stochastic group (locally)
dominates, provided the constant group is always less exposed to the risky as-
set and the dividend growth rate is large enough. The value of g plays a role
because when it is low the stochastic group doesn’t earn enough during high
investment to compensate for the losses due to negative demand shocks. We
shall come back to this point in the next section.

The following Conjecture, based on a numerical investigation of the paramet-
ers space, is the analogous of Proposition 2.6 regarding fixed point S.

Conjecture 2.1. ∃! x′′ ∈ (0,1) such that fixed point S is locally asymptotically stable
∀ x < x′′ and is unstable ∀ x > x′′.

Hint. See Appendix A.10.

2.4.3. Su�icient conditions for endogenous pass-through

So far we have investigated the conditions under which either no pass-through
(Section 2.4.1) or maximal pass-through (Section 2.4.2) occurs asymptotically. In
the present section we prove the existence of a non-degenerate region of the
parameters space within which the pass-through is endogenous. Given that
both groups of traders survive, their relative wealth dynamics is a mean revert-
ing process, and the exact extent of the pass-through depends on the share of
aggregate wealth detained by traders which are vulnerable to demand shocks.
The following Proposition provides a sufficient condition for the emergence of
endogenous pass-through.

Proposition 2.9. ∃ ĝ ∈ (0, g̃) such that ∀g < ĝ the following relation holds:

x′′ < xd < x′. (2.4.9)

Proof. See Appendix A.11.

While Proposition 2.9 only provides a sufficient condition on the dividend
growth rate g that allows for the emergence of long-run heterogeneity, a nu-
merical inspection of eqs. (2.4.3) and (2.4.6) validates the following Conjecture.

Conjecture 2.2. The following relation holds ∀ g > 0:

x′′ < x′. (2.4.10)

Hint. See Appendix A.12.
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Figure 2.3.: Stability regions of fixed points C and S and extent of pass-through
as a function of x. (a): Regime with xd < x′′. (b): Regime with
xd > x′′.

Fig. 2.3 portrays the relevant findings about the emergence of pass-through for
all possible long-run outcomes. For x < x′′ there is maximal pass-through; for
x ∈ (x′′, x′) the system exhibits endogenous pass-through; finally, for x > x′

there is no pass-through. The position of the threshold value x′′ may be either
to the left, panel (a), or to the right of xd, panel (b). A crucial parameter for
the occurrence of either regime is the dividend growth rate. Following Propos-
ition 2.8, if g > g̃ then for all x ≤ xd the stochastic trader dominates (locally)
and the system is in the regime of panel (a). Long-run heterogeneity, and thus
endogenous pass-through, can only occur when x > x′′ > xd. As we shall see in
the simulations in the next section, this regime is characterised by high growth
(respectively, decline) of the stochastic group when it acts relatively more (re-
spectively, less) aggressively with respect of the constant group. Losses due
to buying-high and selling-low are relatively less severe. Following Proposi-
tion 2.9, if g < ĝ then x′′ < xd so that the regime of panel (b) occurs. Remarkably,
when this is the case, the pass-through can be endogenous both when x > xd but
also when x ≤ xd. As we shall show in the next section, a low dividend growth
rate implies that, along the equilibrium paths of the regime of panel (b), losses
during negative demand shocks are relatively more important than gains dur-
ing periods of (locally) steady demand. For this reason, even with a strictly
lower demand x < xd the constant group is able to invade, albeit not to domin-
ate, the stochastic group. Although we do not provide an explicit statement for
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Description Variable Value

dividend rate of growth g 0.05
stochastic investment up xu 0.7
stochastic investment down xd 0.3
probability down when up πd 0.01
probability up when down πu 0.01
initial wealth share ϕ0 0.5
initial return r0 null
initial yield e0 0.01

Table 2.1.: Parameters and initial conditions.

the cases ĝ < g < g̃, Conjecture 2.2 reveals that for any possible growth rate g
the system is either in the regime of panel (a) or in the regime of panel (b).

2.5. Simulations and sensitivity analysis

In the previous Section we have outlined a pass-through taxonomy of all the
long-run outcomes that system (2.2.15) admits. In this section, we explore the
various possibilities by means of simulations. We also investigate the main de-
terminants of the endogenous pass-through scenario in terms of the underlying
parameters of the economy. First, it is useful to take a glimpse at how the dy-
namics in the latter case compares with the dynamics of the system featuring
an asymptotically stable fixed point, either deterministic or random. Fig. 2.4
shows the portfolio (upper panel) and dividend yield dynamics (lower panel)
in three typical simulation runs, one for each of the long-run scenarios depicted
in Fig. 2.3. Once the relevant parameters of the model are set, the two threshold
values x′ and x′′ can be computed numerically. In particular, for the paramet-
risation we use, reported in Table 2.1, they read x′ ≈ 0.498 and x′′ ≈ 0.395. Fol-
lowing Fig. 2.3, it is then sufficient to vary x to obtain a scenario of maximal pass-
through (for x < x′′), one with endogenous pass-through (for x′′ < x < x′), or
one in which (asymptotically) there is no pass-through whatsoever (for x > x′).
The upper panel of Fig. 2.4 shows a typical realisation of the Markov process
{xt} (see Assumption 2.2) driving the stochastic group’s investment, together
with three horizontal lines representing the portfolio fraction of the constant
group, one for each (in)stability scenario. For x = 0.55 > x′, fixed point C is loc-
ally asymptotically stable and the corresponding dividend yield dynamics (red)

44



2. Asset prices and wealth dynamics in a financial market with random demand shocks

0 1000 2000 3000 4000 5000

0.
0

0.
4

0.
8

time

in
ve

st
m

en
t

stochastic trader

xbar = 0.35 xbar = 0.45 xbar = 0.55

0 1000 2000 3000 4000 5000

0.
02

0.
06

0.
10

d
iv

id
en

d
 y

ie
ld

Figure 2.4.: Typical simulation runs within the first regime (cf. Fig. 2.3(a)) with
either C locally asymptotically stable (red), S locally asymptotically
stable (purple), or both C and S unstable (brown). Initialisation as
of Table 2.1.

converges with oscillations to the constant value e∗ = g 1−x
x ≈ 0.041, found in

eq. (2.4.1). For x = 0.35 < x′′, fixed point S is locally asymptotically stable and
the corresponding dividend yield dynamics (purple) converges to the 4-state
Markov process outlined in Corollary 2.1 and pictured in Fig. 2.2(a). Note that
the values of the dividend yield are pairwise identical within the four states as
found in eq. (2.3.9), and read eu = g 1−xu

xu ≈ 0.021 and ed = g 1−xd

xd ≈ 0.117, re-
spectively. This mechanism can be more easily grasped in Fig. 2.2(b): regardless
of the initial value e0 of the yield, after a transient phase the dynamics con-
verges to the boundary of the square with vertices (eu, ed), (eu, eu), (ed, eu) and
(ed, ed), and eventually settles upon these vertices themselves, the jumps therein
being triggered by the stochastic investment process {xt}with a one period lag.
Finally, for x = 0.45 ∈ (x′′, x′), both admissible fixed points C and S are un-
stable and, since the constant group doesn’t vanish, after an initial transient
phase the dividend yield dynamics (brown) persistently fluctuates over a sup-
port strictly bounded by eu from below and by max(ed, e∗) from above (note that
in this scenario e∗ ≈ 0.061). As will become clear shortly (this very scenario, also
pictured in Fig. 2.5, is further analysed in the following Section), the reason why
in some periods (e.g. between 1000 and 2000) the dynamics is richer than in oth-
ers (e.g. around 3000) can be traced to the relative size of the traders in terms of
wealth, and consequently in terms of market impact.
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2.5.1. Endogenous pass-through

In this section we concentrate on those parametrisations that lead to endogenous
pass-through. Following Fig. 2.3, we distinguish two main regimes. In the first,
that typically occurs for high enough dividend growth rates, x′′ > xd, mean-
ing that the constant traders need to invest x > xd in order to invade, let alone
dominate, the stochastic group and thus mitigate the extent of the pass-through.
Conversely, in the second regime, that occurs only for low enough dividend
growth rates, it holds x′′ < xd and the constant traders are able to invade, al-
though not to dominate, the stochastic group even when they invest a strictly
less fraction of their wealth in the risky asset, x′′ < x < xd. Albeit the long-run
outcome of the two regimes is analytically analogous, the economic interpreta-
tion of the inherent trade-off is quite different.

Fig. 2.5 portrays a typical simulation run within the first regime
(cf. Fig. 2.3(a)). The model is parametrised according to Table 2.1 and g is
high enough to ensure that x′′ > xd (the relevant threshold under this para-
metrisation is ĝ ≈ 0.010). As found in the previous Section, the local stability
thresholds are x′ ≈ 0.498 and x′′ ≈ 0.395. To ensure a situation of long-run
heterogeneity, the value of x is selected inside the interval (x′′, x′).

The first panel depicts the portfolio fraction x of the constant group (green)
and a realisation of the stochastic group portfolio process {xt} (blue). The
second panel reports the dynamics of the wealth share ϕt of the stochastic group.
At the beginning of the simulation run, the overall endowment is evenly split
between the two groups. As trading unfolds, wide and sharp fluctuations in the
distribution of aggregate wealth appear and persist indefinitely, as the system
never converges towards a fixed point. We find that the value of the growth rate
of the dividend is largely responsible for this wild dynamics. In general, the
higher g, the wider the fluctuations of ϕt. The pattern of fluctuations of both di-
vidend yields (third panel) and returns (fourth panel) is tightly coupled with the
wealth share dynamics.9 When ϕt is large, both dividend yields et and returns
rt are highly volatile; conversely, when ϕt is small, both et and rt are relatively
stable. Intuitively, when the stochastic group controls most of the wealth in the
economy, it has a great impact on the market portfolio, and eventually on the
clearing price. When this is the case, the portfolio shifts implied by the Markov

9The same is true also for the stationary component of the risky asset prices. Risky asset prices
are not reported here but their dynamics can be inferred (and look indeed similar, up to the
sign of their fluctuations) by the dividend yield dynamics, since the latter is growing at a
constant rate of 1 + g.
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Figure 2.5.: Typical simulation run within the first regime (cf. Fig. 2.3(a)). Initial-
isation as of Table 2.1 and x = 0.45. Green and blue series refer to
the constant and stochastic group variables, respectively.
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process {xt} are to a large extent incorporated into the prevailing price and the
pass-through is substantial. This pattern closely resembles the famous volatility
clustering stylised fact, i.e. the observation that “large changes tend to be fol-
lowed by large changes, of either sign, and small changes tend to be followed
by small changes” (Mandelbrot, 1963). A similar argument goes for the dynam-
ics of traders’ level of wealth (fifth panel)10 and the actual exchanged quantity
of the risky asset (sixth panel). When the stochastic group is predominantly in-
fluential, the system locally resembles fixed point S where prices, and hence the
market value of the portfolio, fluctuate according to the aforementioned random
fixed point (cf. Fig. 2.2(a) and Corollary 2.1) while a null quantity of the asset is
actually exchanged.

As representatives of the second regime, that is when x′′ < xd, we show the
market dynamics in two distinct cases.11 Fig. 2.6 pictures the same simulation of
Fig. 2.5 except for a lower dividend growth rate, g = 0.005 < ĝ. Fig. 2.7 features
both this new value of g and a lower investment fraction of the constant traders,
now set to x = 0.25 < xd.

In both cases, fluctuations in the wealth share (second panel) in the absence of
shock, and thus only due to the stream of dividend payments, appear dampened
compared to Fig. 2.5. Intuitively, g has an influence on the speed of wealth
adjustment for the group holding the greatest fraction of wealth in the risky
security. In both these scenarios, the wealth share of each group remains, on
average, relatively stable. In Fig. 2.6 the constant traders have the highest wealth
share and thus the level of endogenous pass-through is smaller than in the other
cases, as can be seen by comparing the dividend yield dynamics (third panel). In
Fig. 2.7 the stochastic traders have the highest wealth share, leading to a larger
pass-through. Leaving aside the size of fluctuations, the striking feature of this
second regime with a lower dividend growth rate is that market volatility is
more persistent.

A deeper analysis of the wealth dynamics in response to a local realisation of
the Markov process {xt} is facilitated in Fig. 2.8, where we provide a close-up of
all the three simulations presented earlier covering a shorter time span for vis-
ibility purposes. In all three scenarios, as long as xt−1 = xt = xu, the wealth of
the stochastic group grows faster than that of the constant group, since xu > x;
as a result, their wealth share increases. The speed of increment depends on the

10To get a more appreciable picture, the wealth series have been discounted by their non-
stationary component 1 + g.

11For the sake of comparability, all the simulations that we show throughout the chapter are
driven by the same random seed.
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Figure 2.6.: Typical simulation run within the second regime (cf. Fig. 2.3(b)). Ini-
tialisation as of Table 2.1 except g = 0.005 and x = 0.45. Green and
blue series refer to the constant and stochastic group variables, re-
spectively.
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Figure 2.7.: Typical simulation run within the second regime (cf. Fig. 2.3(b)). Ini-
tialisation as of Table 2.1 except g = 0.005 and x = 0.25. Green and
blue series refer to the constant and stochastic group variables, re-
spectively.
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Figure 2.8.: Close-up of simulations in Fig. 2.5 (left), Fig. 2.6 (centre), Fig. 2.7
(right).

dividend growth rate g and it is higher in the first regime (left panel) than in the
second regime (centre and right panels). When the stochastic portfolio suddenly
shifts from high to low investment in the risky security, i.e. when xt−1 = xu and
xt = xd, a downward pressure on the price is exerted and this consequently
reduces the level of wealth for both groups, proportionally on their relative pos-
itions at time t− 1. Again, since xu is always greater than x, the decrease hits the
stochastic group to a larger extent, and in both cases the wealth share plummets
accordingly. During the phases in which xt−1 = xt = xd, instead, the stochastic
group is worse off in the first regime and in the first case of the second regime,
since xd < x, and better off in the second case of the second regime, where the
opposite relation holds true. Hence, their wealth share shrinks in the left and
centre panels and expands in the right one. The differences between the first
and the second panel are not due to the relative position of x with respect to xd

but rather to the size of g. For high g (left panel), the wealth of stochastic traders
decreases quite sharply compared to that during negative demand shocks. For
low g the decrease is of comparable size. The relative position of x ad xd is
instead crucial when the stochastic portfolio suddenly shifts from low to high
investment in the risky security, i.e. when xt−1 = xd and xt = xu. The ensuing
increase favours the stochastic group in the second scenario of the second re-
gime (i.e. when xd > x, right panel) but penalises it in both other cases (left and
centre panel).
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2.5.2. Sensitivity analysis

We are left with studying to what extent changes in the values of the underlying
parameters influence the asymptotic dynamics of the economy. Starting from
the usual parametrisation of Table 2.1 except g = 0.005, Fig. 2.9 shows the evol-
ution of the threshold values x′ and x′′ in terms of the constant trader portfolio
x for changes in g (top-left panel), in the position of xt within the unit simplex
with constant jumps xu − xd (top-right), in the dispersion of xt around a con-
stant mean (bottom-left), and in the transition probability π, under the Special
case π = πu = πd (bottom-right). In each plot, the relative position of the two
thresholds splits the Cartesian plane in three distinct areas, corresponding to
the stable regions of both fixed points C and S, and their jointly unstable re-
gion where long-run heterogeneity and endogenous pass-through occur. The
coloured points correspond to the parametrisation chosen for the simulations
pictured in Fig. 2.5 (red), Fig. 2.6 (purple), and Fig. 2.7 (brown). In the top-left
panel, we show the joint effect of x and g. For low levels of g (i.e. to the left
of the vertical dotted line g = ĝ) the system is in the second regime of Fig. 2.3
and endogenous pass-through can occur both when x > xd and when x ≤ xd

(the horizontal dotted line in the picture represents the locus x = xd). For higher
levels of g (to the right of the vertical dotted line) endogenous pass-through can
occur only for x > xd. In fact, g has a (slightly) negative effect on the threshold x′

and a positive effect on x′′; the first result has been already shown in the afore-
mentioned Special case and generalised in Proposition 2.5. Therefore, the higher
g, the narrower the interval of x for which there is long-run heterogeneity. For
even higher g, this interval shrinks even further, and at the limit it collapses into
one point:

lim
g→+∞

x′(·) = lim
g→+∞

x′′(·) = EπG [xt], (2.5.1)

where EπG [·] denotes the geometric expected value with respect to the invari-
ant distribution π of the Markov process {xt}. The top right panel shows what
happens when the support of the stochastic portfolio xt shifts within the unit
simplex, keeping the range, i.e. the extent of the demand shock xu − xd, con-
stant. Clearly, the width of the long-run heterogeneity corridor has a non-linear
relation with E[xt]. In particular, the difference x′ − x′′ is especially large at
the extrema of the simplex. Note also that x′′(·) is not monotone, and for suf-
ficiently high values of E[xt] it is decreasing. When x′′ crosses the bisector (the
dotted line, along which x = xd) from above, a non-degenerate region between
the two curves appear. For any point in this region, the constant group is able
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Figure 2.9.: Sensitivity analysis. Green and blue curves refer to the constant and
stochastic group thresholds x′ and x′′, respectively. Coloured points
correspond to simulations in Fig. 2.5 (red), Fig. 2.6 (purple), and
Fig. 2.7 (brown). Initialisation as of Table 2.1 except for variables
reported on the axes and g = 0.005.
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to invade the stochastic group by investing a strictly less fraction of wealth in
the risky asset; this is what we previously dubbed the ‘second regime’. When
we simulated the second scenario (Figs. 2.6 and 2.7) we opted for keeping xu

and xd unchanged and reducing the dividend growth rate g that, following our
discussion of the top-left panel, lowers the x′′ threshold and enlarges the shaded
area below the bisector line. As the top-right panel shows, however we could
have kept both g and the jump xu− xd unchanged, increased xd close to 0.6, and
eventually end up in a mathematically equivalent dynamics. In the bottom-left
panel the thresholds are plotted against the symmetric range of {xt} around a
constant E[xt] = 0.5. Both functions are decreasing but x′′ is steeper, so that
the interval of long-run heterogeneity widens as the dispersion increases. In-
tuitively, the more abrupt the change in the positions of the stochastic traders
during switching phases, the more the effect of buying high and selling low
penalises them and favours the constant group, which is able to dominate with
a lower risky position x. For similar reasons, the more frequent the switching
phases of {xt}, the more the stochastic traders are disadvantaged. This is high-
lighted in the bottom-right panel, where the range of {xt} is kept fixed, but the
transition probability π = πu = πd varies. Following Proposition 2.4, whenever
πu = πd the stability condition of fixed point C does not depend on the value
of π and therefore x′ is a horizontal line. On the contrary, the stability of fixed
point S does depend on the specific value of π (see Proposition 2.7). In particu-
lar, the higher π, the more often demand shocks hit, so that losses induced by the
buy-high and sell-low effect make the stochastic traders less likely to dominate.

2.6. Concluding remarks

We investigate asset prices and wealth-driven selection in a simple financial
market where one of two groups of traders is subject to random demand shocks.
When a positive (negative) shock hits, depending on the relative wealth of the
two groups, the extra supply (demand) of risky asset is either fully absorbed
by the market, or it is passed through onto market prices. We provide condi-
tions on the economy parameters such that demand shocks are always fully ab-
sorbed in the long-run, when the stabilising constant agents dominate, as well
as conditions under which demand shocks are entirely passed through, when
the constant agents vanish. Moreover, there exist cases when both groups sur-
vive and demand shocks may or may not lead to sharp price movements. In this
case we say that the pass-through is endogenous, its occurrence being coupled
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with the traders’ wealth dynamics. In order to derive these results we study the
random dynamical system characterising the dynamics of relative wealth, risky
asset returns, and dividend yield, as driven by an exogenous demand stochastic
process. Our results are unobtainable from the study of the underlying determ-
inistic skeleton alone. In particular, we show that simply taking into account
the expected value of the stochastic portfolio is not sufficient to determine the
long-run dynamics of the system.

Our model can be further extended in a number of directions. A first im-
provement would be to reconcile our framework with the typical investment
strategies adopted within the HAMs literature, namely dependent on realised
market outcomes, e.g. chartist and fundamentalist. Relatedly, it seems natural
to extend our 2-state stochastic portfolio to a general n-state Markov process,
with n > 2, in order to allow for more convincing (e.g. staircase) adjustments
of holdings of the risky asset in response to a demand shock. This would in-
deed complicate the analysis since n possible levels of investment correspond
to a 2n-state random fixed point Markov process (see Corollary 2.1). In such a
scenario, we believe that the role of trend-followers (and therein their size in
terms of wealth and the magnitude of their portfolio response) might be crucial
in spelling the patterns of shock propagation revealed by the empirical literat-
ure. In other words, trend-following behaviour could act as a microfoundation
device for the spread of demand shocks that we assumed to be joint. On top
of that, it would be appealing to further endogenise not just the response to an
exogenous demand shock, but the emergence of the shocks themselves, for in-
stance by relating them to the dynamics of the risky asset’s fundamentals. This
can in principle be done by explicitly taking into account the noise generated by
the dividend’s growth rate and connecting demand shocks to traders’ expecta-
tions of it. Finally, an additional enhancement would be to allow for an arbitrary
number of risky securities to be traded in the market, along the lines of the de-
terministic wealth selection model of Anufriev et al. (2012). This would enable
the investigation of the spillover effect of shocks hitting the demand of one asset
onto other assets.
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3
An agent-based model of intra-day financial

markets dynamics1

3.1. Introduction

Huge improvements in information and communication technologies have sub-
stantially reduced the latency required to operate on financial markets in the last
decades. This has fostered market activity at increasingly higher frequencies.
Differently from traditional money managers, who generally hold their portfo-
lio positions for a long period, ranging from a few days to even months, high-
frequency traders aim at reaping profits from a large multitude of buy and sell
operations that they execute within each trading day, rarely holding their posi-
tions overnight. These (very) short-term trading strategies have proved remark-
ably profitable even during periods of nearly unprecedented financial turmoil
(see e.g. Aldridge, 2013). At the same time, the overall impact of these trad-
ing strategies on market dynamics is still unclear.2 In addition, the increasing
volumes of high-frequency traders in financial markets certainly impacts many
of the stylised facts of intra-daily financial market dynamics. These statistical

1This chapter is a joint work with Mauro Napoletano (OFCE–Sciences Po, Sophia Antipolis,
France). The manuscript is available as Staccioli, Jacopo and Mauro Napoletano (2018). ‘An
agent-based model of intraday financial markets dynamics’. LEM Working Papers series n.
12/2018. URL: http://www.lem.sssup.it/WPLem/2018-12.html. The authors acknowledge
the financial support of European Union’s Horizon 2020 grant No. 640772 – Project Dolfins.

2The trend of progressively shortening the time needed to collect real-time information and
post a new order has been in place for many decades, starting with the introduction of high-
speed telegraph service and later boosted by the availability of powerful computer systems.
Nevertheless, a full and agreed understanding of the functioning, potential benefits, and
disadvantages of high-frequency trading has yet to be reached (see also Aldridge, 2013; Jacob
Leal et al., 2016; SEC, 2014).
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properties are still begging for a sound theoretical framework (see Cont, 2011
for a discussion).

We propose a parsimonious agent-based model of a financial market that is
able to jointly reproduce many of the empirically validated stylised facts. These
include properties related to returns (leptokurtosis, absence of linear autocor-
relation, volatility clustering), trading volumes (volume clustering, correlation
between volume and volatility), and timing of trades (number of price changes,
autocorrelation of durations between subsequent trades, heavy tail in the distri-
bution of such durations, order-side clustering).

In the last few decades, the still flourishing literature on agent-based mod-
els (some of the milestones include Arthur et al., 1997; Levy et al., 1994; Lux,
1995, 1998; Lux and Marchesi, 2000) has proved invaluable for investigating and
replicating the statistical properties of financial markets that are hardly recon-
cilable with the representative agent paradigm.3 However, the vast majority of
the proposed models typically focuses only on a subset of the whole ensemble
of recognised stylised facts, and in particular on the facts that are time-scale in-
variant. These generally include properties related to rates of return, such as
leptokurtosis, absence of linear autocorrelation, and volatility clustering. Other
stylised facts concerning the timing of orders posting and trades execution are
often neglected. This is partially due to the acknowledged difficulty of defining
a reasonable mapping from the iterations of a computer simulation to proper
calendar time (see e.g. Cioffi-Revilla, 2002). A notable exception is the work of
Kluger and McBride (2011), who propose a model that replicates the intra-day
U-shaped seasonality in market activity, i.e. the tendency of exchanged volumes
to peak during the early morning just after market opening and late afternoon
just short of market closing, leaving a trough around lunch-time.

To the best of our knowledge, no previous study has ever addressed the sim-
ultaneous emergence of all the stylised facts that shape financial dynamics, i.e.
including those at the intra-day level. We therefore attempt at filling this gap,
by proposing at the same time a methodological solution to the time mapping
problem and by identifying the building blocks of the model which are respons-
ible for the emergence of the solicited stylised facts.

Our model relies on three main ingredients. The first consists of a behavioural
specification of traders, which is typical of many established models in the lit-

3Some of these models, often dubbed “heterogeneous agent models” are low-dimensional and
mathematically tractable; others, are too complex to be investigated analytically and rely on
extensive numerical simulations. See Hommes (2006) and LeBaron (2006) for a discussion.
Our work aims at contributing to the latter strand of literature.
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erature. Indeed, we assume that traders are of two types: fundamentalists and
chartists. Fundamentalists only take into account the fundamental value of the
security (which we shall assume constant across time and common knowledge),
by buying the asset if it is undervalued and selling it if it is overvalued. Chartists
instead rely on the recent history of price changes to set their orders, by extra-
polating the underlying trend if they are followers or counteracting it if they
are contrarians. This specification is justified by empirical surveys of financial
practitioners’ behaviour (see e.g. Frankel and Froot, 1990).

The second ingredient, which to our knowledge has never appeared in any
previous contribution, amounts to a realistic scheduling of trading events. More
precisely, we borrow the exact time structure of a trading day on a real financial
market, namely the EURONEXT, and we design our simulations according to the
sequence and durations of the different phases therein (see Euronext, 2017). The
latter consists, in chronological order, of a morning order accumulation phase,
an opening batch auction, a lengthy phase of real-time order matching accord-
ing to a continuous double auction, a pre-closing order accumulation phase, and
a closing batch auction. Imposing a strict and realistic schedule on the unfolding
of events enables to devise a sound and plausible correspondence between sim-
ulation iterations (which we shall identify with seconds) and calendar time. Mi-
crostructure details about the central order book also comply with EURONEXT

specifications.
The last ingredient of the model is an endogenous mechanism for traders par-

ticipation. We assume that traders (of either type) are more willing to engage
in trading whenever the price change (of either sign) realised in the immediate
past is high enough. The intuition is that large realised (absolute) returns signal
the possibility of reaping further profit in the future. Note that in the following
we shall not impose any short-sale restriction. A similar scheme is devised in
Ghoulmie et al. (2005), Aloud et al., 2013 and Jacob Leal et al. (2016). In spite of
being extremely simplistic, we find that this activation mechanism proves cru-
cial for matching our target stylised facts, specifically those related to the timing
of trades execution.4

4Another conceivable ingredient, commonly adopted in financial models akin to ours, is a
switching scheme between the fundamental and chartist strategies. In many contributions
this is known to foster volatility clustering (see e.g. Kirman and Teyssière, 2002; Lux and
Marchesi, 2000, and for a discussion Cont, 2007). Complementary simulation analyses that
we carried out however indicate that this component is irrelevant in our setting, in which
volatility clustering arises purely from the interaction of heterogeneous traders and is espe-
cially influenced by the trend-following momentum on behalf of chartists.
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The next Section provides an overview of the various stylised facts that char-
acterise high frequency financial dynamics. Section 3.3 describes in detail the
various assumptions of our model. Section 3.4 reports the results of numerical
simulations under different scenarios. Finally, Section 3.5 concludes.

3.2. Stylised facts

We begin by describing the various statistical properties that characterise the
intra-day dynamics of many financial markets and that our model aims at re-
producing. Some of these properties are recognised to apply across different
time scales while others are intra-day specific and thus require a proper calen-
dar setting to be analysed (see Cont, 2001, 2011, for a more detailed account).
The former properties are mainly related to asset returns and have already been
studied and replicated in a number of agent-based models lacking of a rigorous
definition of calendar time. The latter instead require a more explicit architec-
ture in terms of microstructure. In what follows, we present each stylised fact,
distinguishing between time-invariant and intra-daily facts.

3.2.1. Time-invariant stylised facts of financial markets

SF1 – Leptokurtic returns The unconditional distribution of returns is charac-
terised by a heavier tail with respect to the Gaussian distribution (Fama, 1965;
Kon, 1984). The magnitude of excess kurtosis is typically inversely related to
the time scale of analysis. This finding stands at sharp odds with the normal-
ity assumption adopted in a number of models, most notably the Black-Scholes
formula for derivatives pricing (see e.g. Hull, 2017).

SF2 – Absence of autocorrelation of (raw) returns The time series of (raw)
rates of return exhibits a statistically significant serial correlation for a very short
amount of time, quickly decaying to zero afterwards. Intuitively, should there
be more predictable autocorrelation structure, this information could be used to
perform ‘statistical arbitrage’ with positive profits (Mandelbrot, 1971).

SF3 – Volatility clustering While the linear autocorrelation of returns displays
very little structure, the autocorrelation of non-linear functions such as the abso-
lute value or the squared value of returns is usually positive and tends to decay
at a much slower pace. Therefore, while the signs of future returns are not read-
ily predictable, their magnitudes are, and tend to cluster in time, giving rise to
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prolonged periods of low volatility followed by periods of high volatility (An-
dersen and Bollerslev, 1997; Mandelbrot, 1963). This clearly suggests that the
series of returns is not independent.

SF4 – Leverage e�ect The leverage effect or asymmetric volatility (Black, 1976)
captures the asymmetric tendency of volatility to be higher during price drops
rather than during price surges. This translates into the negative correlation
between price volatility – e.g. absolute returns – and the (raw) returns of the
asset (Aït-Sahalia et al., 2013; Bollerslev et al., 2006; Bouchaud et al., 2001).

SF5 – Autocorrelation of volumes The quantities exchanged during successive
trades display significant positive serial correlation (Campbell et al., 1993; Engle,
2000; Gallant et al., 1992). This is true across different time aggregation units and
both for indices and individual stocks.

SF6 – Correlation between volumes and volatility Price variability and trad-
ing volumes display positive correlation (Foster, 1995; Tauchen and Pitts, 1983).
The underlying idea is that the flow of information acts as a common determin-
ant of both changes in prices and traded quantities.

3.2.2. Intra-daily stylised facts of financial markets

SF7 – Number of price changes per day In a cross-section perspective, the
number of price-changing trades per day is clearly related to the degree of li-
quidity of the market and is typically linked to the capitalisation of the under-
lying security. Over time, moreover, there is a tendency of reduction in the time
needed to execute a market order, fostering the submission of an increasingly
larger number of orders, eventually leading to an increasing frequency of actual
trades. Nowadays, for blue-chips in highly liquid markets and in the absence
of ‘disruptive’ fundamental news, this number is often around 10,000, with a
substantial degree of variance (Bonanno et al., 2000; McInish and Wood, 1991).

SF8 – Autocorrelation of durations between subsequent trades Within con-
tinuous double auctions, the actual timing of transactions is endogenous since
a freshly submitted order might not find a compatible crossing order already
stored in the book. Therefore, the time intervals between subsequent transac-
tions is both random and tightly linked to the previous history of orders post-
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ing. Empirically, these durations display positive autocorrelation – translating
in clustered periods of frequent transactions followed by periods of sporadic
transactions (Cont, 2011).

SF9 – Fat-tailed distribution of durations between subsequent trades The dis-
tribution of the durations defined in SF6 reveals a heavier tail with respect to an
exponential distribution, that would be instead expected if traders submitted
their orders in a non-correlated timely fashion (Raberto et al., 2002).

SF10 – Order-flow clustering The arrival of orders over time to the central
order book is clustered with respect to the side of intended transaction: buy
orders are more likely to follow previous buy orders, while sell orders are more
likely to follow sell orders (Biais et al., 1995).

SF11 – U-shaped activity Market activity throughout the day displays a strong
seasonality, with peaks of exchanged quantities in the early morning after mar-
ket opening and in the late afternoon in the vicinity of market closing, and a
relative more tranquil period in the hours around lunch-time (Jain and Joh,
1988; Lockwood and Linn, 1990).

In what follows, we aim at developing a simple and parsimonious model
which is nonetheless capable of jointly reproducing all the aforementioned styl-
ised facts, with the exception of the intra-day volume seasonality5 (SF11), which
is unobtainable by construction in our setting as will be clear later, and of the
leverage effect (SF4), for which we believe a more complex behavioural specific-
ation is needed.

3.3. The model

Consider an order-driven financial market in which a single long-lived stock is
traded by a population of heterogeneous agents. In line with the empirical liter-
ature on practitioners’ behaviour in financial markets pioneered, among others,
by Frankel and Froot (1990), Allen and Taylor (1990), Taylor and Allen (1992),

5Kluger and McBride (2011) provide an agent-based model that reproduces the U-shaped
nature of intra-day volumes, although they don’t discuss the whole ensemble of the styl-
ised facts listed above.
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and more recently by Menkhoff (2010), we consider two trading strategies: fun-
damentalist and chartist. A fundamentalist trader believes that the price of a
security will quickly revert to its fundamental value; a chartist (or technical)
trader, instead, believes that the future price of a security can be predicted using
the trend of past realised market outcomes. Since we are interested in model-
ling short-term dynamics, we assume that the security pays no dividend and
there is no “fundamental” news circulating during this time span. In this sense,
besides an additive i.i.d. noise component incorporated in both strategies, the
dynamics of prices and returns is endogenously determined by the interaction
of the two strategies with the market microstructure, and observed volatility is
actually excess volatility.

3.3.1. Timing and market se�ing

Since we are interested in describing the dynamics of a generic stock at a well-
defined time scale – the intra-day level – we need to devise a mechanism that
maps the iterations of our agent-based model to proper calendar time. This is
a notoriously daunting and controversial task within the agent-based literature
(see e.g. Cioffi-Revilla, 2002). To address this issue, we impose a strict global
schedule to the sequence of events. In particular, we design our simulations
to closely replicate the timing structure of an existing stock market, namely the
EURONEXT. A typical trading day on the EURONEXT exchange unfolds as fol-
lows (Euronext, 2017):

at 7:15am the trading day starts with the pre-opening phase in which orders ac-
cumulate on the central order book without any transactions taking place;

at 9:00am a (batch) opening auction takes place, matching the orders submitted
during the pre-opening phase and determining the opening price;

from 9:00am to 5:30pm the market operates according to a continuous double
auction, and the introduction of a new order immediately generates one
or more transactions if there are matching orders on the opposite side of
the book. This phase is dubbed the ‘main trading session’;

at 5:30pm pre-closing phase starts, in which matching of orders is discontinued
and, as in the pre-opening phase, orders accumulate with no transaction
taking place;

at 5:35pm the closing auction takes place, matching the orders submitted dur-
ing the pre-closing phase and determining the closing price of the day.
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from 5:35pm to 5:40pm orders can be entered for execution at the closing price
only. This phase is dubbed ‘trading at last’.

With the exception of the trading in the last phase6, we model our trading day
according to the schedule above, and we identify a single iteration of the model
with a calendar second. Hence, the pre-market phase corresponds to 6,300 time
steps (1 hour and 45 minutes), the main trading session to 30,600 time steps (8½
hours), and the pre-closing phase to 300 time steps (5 minutes). A whole trading
day consists of 37,200 simulation steps of our model.

At every time step some of the traders are activated (see the next section).
They proceed in forming their expectations about the future performance of the
security, and submit limit orders accordingly. When an order is submitted, it is
either stored on the central order book or matched (if possible), depending on
the current phase of the trading day. If matched, the order gives rise to one or
more trades, the relevant quantities are exchanged, and a new price is dissem-
inated. The central order book follows the usual price-time priority rule.

3.3.2. Traders’ participation

We devise two alternative mechanisms for traders participation, one exogenous
and one endogenous. In the first, a single randomly selected trader is activ-
ated at each time step. This activation scheme is similar to the one employed
by Chiarella and Iori (2002). In the second, we follow Jacob Leal et al. (2016)
and we assume that traders’ activation is endogenous in the following sense: at
every time step all traders decide whether they are willing to submit an order by
comparing the last recorded price change (in absolute value) to a trader-specific
and time-varying threshold, drawn from a common distribution with positive
support. In particular, trader i is active at time t if |rτ| > δi,t ∼ |N (0, σ2

δ )|,
where τ < t denotes the last time in which a trade occurred. If multiple agents
are active at time t, they engage in trading in randomised order. If no trader
is endogenously activated at time t, then with a certain probability φ > 0 the
mechanism falls back to the baseline activation scheme, and a randomly selec-
ted trader is asked to submit an order. While the first exogenous mechanism is
useful as a baseline scenario to describe and test the functioning of the model,
we discover that the second endogenous mechanism is better suited for replic-
ating our stylised facts. In particular, the endogenous activation allows for both

6We don’t model this phase since by construction has no influence on the price of the security,
and is therefore deemed irrelevant with respect to our objective stylised facts.
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crowded and uneventful periods in which either many or no orders are sub-
mitted, and contribute to clustering of volumes, of trade durations, and of the
order-flow.7

3.3.3. Traders’ behaviour

Traders form expectations about the future (log) return over a certain time hori-
zon h as follows:

r̂F
i,t+h = wF

i · log
(

pF

pt

)
+ εt (3.3.1)

r̂C
i,t+h = wC

i · log
(

pt

pt−h

)
+ εt (3.3.2)

The superscript F (respectively, C) identifies the fundamentalist (respectively,
chartist) strategy. The variable pF > 0 denotes the fundamental price of the
security, which is common knowledge among all traders. The term h ∈ N+

measures the horizon the trader operates within, and εt ∼N (0, σ2
ε ) is a common

i.i.d. noise component.
The coefficients wF

i ∼ |N (0, σ2
F)| and wC

i ∼ N (µC, σ2
C) are trader-specific and

capture the “aggressiveness” of the underlying strategy. More specifically, the
weight wF

i quantifies how quickly the price of the stock is expected to revert to
its fundamental value. In contrast, the weight wC

i measures the extent to which
traders believe the future return over period h will match its past figure. From
eq. (3.3.2), it is also clear that all chartists use only the last realised return over
the time-span h to form their expectation.

The above assumptions about chartists’ expectations help in containing the
dimensionality of the model8 and stand at variance with previous works (e.g.
Pellizzari and Westerhoff, 2009), which instead assume a weighted moving av-
erage (typically exponentially or linearly) over multiple past returns. However,
given our intra-daily setting, we believe that the short memory of chartists mim-
ics more closely the fast response of high-frequency traders to suddenly real-
ised signals. Notice also that we admit an imbalance between trend followers
and contrarians, depending on the value of the mean µC of the distribution of
chartists’ weights wC

i .

7Pellizzari and Westerhoff (2009) introduce a similar rule, based on past profits.
8The gains in terms of parsimony are due to the fact that we don’t need to quantify the memory

of the traders (or even worse, a distribution thereof), and a rate of decay of the importance
of remote past history.
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Once a trader has formed her expectation about the future return, she submits
a limit order to the central order book. A limit order, `i,t, is a tuple {price,

quantity, validity} such that: price equals the expected prevailing price at
the end of period t + h, rounded to the nearest tick; quantity is always fixed
to one unit, carrying a positive (respectively, negative) sign if the order is to be
stored on the buy (respectively, sell) side of the central order book, depending on
whether the trader expects the price to increase or decrease; validity, namely
the time after which the order expires and is automatically deleted from the
central order book, is set to equal the horizon of the expectation. We assume
that all traders have unlimited access to external credit at a zero interest rate, so
that they can either short-sell or leverage-buy the stock without bound. In other
terms, traders don’t face a budget constraint; nevertheless, they are prevented
from borrowing an infinite amount of money by the unitary quantity rule. To
sum up, a limit order `i,t submitted by trader i (either fundamentalist or chartist)
at time t takes the form:

`i,t =
{
round

(
pt · exp(r̂i,t+h

)
, tick), sign(r̂i,t+h), t + h

}
(3.3.3)

where round(·) denotes the rounding function, tick is the minimum price incre-
ment/decrement (a parameter of the market), and sign(·) is the sign function,
which takes value 1 if the expected return is positive, -1 if it is negative, and zero
otherwise.

We do not model order cancellation as an element of a trader’s strategy. How-
ever, we introduce the following automatic cancellation rule: when a trader sub-
mits a new order, all other orders already submitted by the same trader and
stored on the book that are inconsistent with the new expectation are automat-
ically cancelled. These include all orders stored on the opposite side of the book
and those orders whose underlying price is deemed unfavourable give current
expectations. For example, when a buy (respectively, sell) order is issued at price
p̃, all sell (respectively, buy) orders, and all buy (respectively, sell) orders whose
price is greater (respectively, less) than p̃, are automatically cancelled. The first
condition ensures that a trader never trades with herself, i.e. it rules out the pos-
sibility that two orders submitted by the same trader are matched together. The
second condition ensures that in case a trader is currently willing to buy (sell)
the security at a certain price, she is no longer willing to buy (sell) at a higher
(lower) price, as per orders submitted under possibly different beliefs.

It is important to note that no reference whatsoever to any specific time of
the day appears in either eq. (3.3.1) or eq. (3.3.2). In other words, none of the
traders knows “what the time is” when asked to submit an order, and behaves
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identically throughout every phase and instant of the trading day. This implies
that, by construction, our model is unable to reproduce SF11, and that any spike
in market activity observed in our series has the same probability of occurring
during morning, lunch, or afternoon time.

3.4. Numerical simulations

In spite of the very simple behavioural rules that we assume, the complexity as-
sociated with the endogenous nature of a limit order book dynamics prevents us
from studying the system analytically and to come up with a closed form solu-
tion. We thus follow the standard practice in agent-based models of numerically
simulating the system and then performing the relevant statistical analysis on
the generated time-series.

We start by fixing a few parameters and design principles that are kept stable
across our simulations. The market is populated by N = 1,000 traders; the fun-
damental price of the stock is constant and equals pF = 100, while the tick value,
i.e. the smallest possible increment or decrement of the price, equals 0.001. At
the beginning of the simulation the price is set to equal its fundamental value,
p0 = pF, and all chartists are provided with a history of past prices between
t = −h and t = 0 that evolves (backwards) as a pure random walk whose
increments are given by the same noise component εt present in eqs. (3.3.1)
and (3.3.2). Finally, we fix the horizon of traders’ expectations h to 1,000 seconds
(simulation time steps); incidentally, this value equals the expected duration
between two consecutive activations of a same trader within the exogenous ac-
tivation scheme, given the number of traders N.

In order to perform the statistical analysis needed to validate our model
against the stylised facts listed in Section 3.2, we rescale the relevant time series
by pooling the stream of trade messages into homogeneous time windows of
one calendar minute each.9 The minute-by-minute price (respectively, volume)
series corresponds to the average (respectively, sum) of the underlying trading
prices (volume) during that minute. Following Section 3.3.1, the main trading
session consists of 510 minutes.

We simulate the model10 under three different scenarios. In Section 3.4.1 we

9This is necessary because, at the finest level of granularity, our simulations yield time series of
the relevant quantities that are irregular since, by construction, trade emerges endogenously
when at least two crossing orders are stored on the central order book.

10The simulation is coded in C++11 and largely exploits the object-oriented programming
paradigm, defining classes for traders, for the central order book, and for the order data
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only include purely noise traders. This allows us to evaluate the impact of mar-
ket microstructure on the generation of stylised facts. In Section 3.4.2 we invest-
igate the effects of the interplay between fundamentalists and chartists on the
one hand, and market microstructure on the other hand, under the baseline exo-
genous activation. Finally, in Section 3.4.3 we add a further element of complex-
ity by assuming that traders follow the endogenous participation scheme de-
scribed in Section 3.3.2. Finally, in Section 3.4.4 we perform some complement-
ary sensitivity analyses. The results that we show correspond to averages across
100 Monte Carlo simulations of a fully fledged trading day (see Section 3.3.1).
All confidence intervals are set at the 95% level.

3.4.1. Noise traders only

The first simulation scenario, which we dub NT, is useful to properly disen-
tangle the effects implied by the market microstructure details on the gener-
ation of market statistical properties from those implied by our assumptions
about traders’ behaviour. Noise traders do not condition their investment on
any market-related variable; rather, they “trade on noise as if it were information”
(Black, 1986). Given our formulation, we set all the wi’s in eqs. (3.3.1) and (3.3.2)
to zero, such that the expected return for each trader will only depend on the
i.i.d. noise component εt.

Table 3.1 summarises the specific parametrisation. By setting δt to infinity we
rule out endogenous activation, and by setting φ = 1 we ensure that exactly one
trader is activated at every time step t.

Fig. 3.1 pictures the relevant plots under this scenario. Panel (a) shows the
evolution of the minute-by-minute market price for a typical trading day while
panel (b) reports its log-differences. The average number of price changes per
day under this scenario is 13578. If microstructure effects were completely ir-
relevant, given our limit price function (3.3.3), then the time series of realised

structure. The code supports the execution of fully parallel Monte Carlo simulations, using
the OpenMP framework. Random number generation relies on the 32-bit Mersenne Twister,
as implemented in the C++ Standard Library (std::mt19937). Parameters and initialisation
for all the Monte Carlo simulations are passed through a single json file during run-time,
so that the code needs not be (re)compiled every time a new scenario is simulated. The file
is parsed using the jsoncpp library. Each Monte Carlo simulation returns a SQLite database
file containing the associated initialisation and a stream of messages from the central or-
der book, each corresponding to a successful transaction (each message reports the current
POSIX timestamp, bid, ask, transaction price, quantity, and depth of the book for both sides).
The output databases are then imported and analysed using R.
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Figure 3.1.: Main stylised facts under the noise traders scenario.
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3. An agent-based model of intra-day financial markets dynamics

Parameter Value

number of traders N = 1,000

fundamental price pF = 100

initial price p0 = pF

smallest price change tick = 0.001

horizon/order validity h = 1,000

noise process εt ∼N
(
µε = 0, σ2

ε = 5e-5
)

fundamentalist weight wF
i = 0

chartist weight wC
i = 0

activation threshold δt→ +∞

activation fallback probability φ = 1

Table 3.1.: Parameters and initial conditions for the NT scenario.

returns should share the same statistical properties of the i.i.d. series of expected
returns. In contrast, we find that the Ljung-Box statistic strongly rejects (p-value
< 0.001) the null hypothesis of independence. This is also visible in panel (c),
which shows the autocorrelation function of price returns. Positive autocorrel-
ation for the first lag is substantial, and for the second lag is very close to the
confidence threshold. The Augmented Dickey-Fuller (ADF) test doesn’t reject
(p-value < 0.001) the presence of a unit root within the price series. Prices are
therefore well approximated by a random walk, although its increments are not
independent. Moreover, the (absolute) kurtosis of the sample distribution of re-
turns, κ ≈ 3.43, is only negligibly higher than that of expected returns, that by
construction equals 3. We conclude that the EURONEXT microstructure setup
does force a time dependence character into the resulting series, although this
lasts for just under a couple of minutes.

Furthermore, panel (d) pictures the autocorrelation function of the absolute
value of returns. Its rate of decay is very high and only the first lag is significant;
we conclude that volatility clustering is not present in this scenario. Panels (e)
and (f) relate to the properties of time durations between subsequent trades.
Panel (e) shows the autocorrelation function of such durations, whereas panel
(f) pictures a quantile-quantile plot of their distribution, compared to a fitted
exponential distribution. The autocorrelation function is negative for the first
few lags, and the distribution has a tail that is thinner than that of an exponential
distribution. This suggests that there is no correlation structure in either the
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3. An agent-based model of intra-day financial markets dynamics

exchanged volumes of the asset (panel (g)), nor in the clustering of buy and sell
orders stored in the book (panel (h)). Finally, panel (i) shows the presence of
a negative relationship between exchanged volumes and volatility, instead of
the predicted positive correlation. Likewise, panel (j) suggests that any leverage
effect is absent in our series.

The first column on the right of Table 3.4 compares these results with our
objective stylised facts. Only two facts are matched as a consequence of the
interactions implied by the market microstructure. It is evident that more struc-
ture on the behaviour of the traders is needed in order to obtain a more realistic
dynamics.

3.4.2. Fundamentalists and chartists

In this scenario (FC), we move a step forward by switching on our fundament-
alist and chartist specifications, according to eqs. (3.3.1) and (3.3.2). On the one
hand, fundamentalist traders anchor the price dynamics to a neighbourhood
of the fundamental price pF. On the other hand, chartists tend to exacerbate
or to counteract the prevailing trend, depending on their being trend follow-
ers or contrarians. Accordingly, the stronger the magnitude of trend following
behaviour, the wider the divergence of price from pF (either upwards or down-
wards) should be. The parametrisation we propose, reported in Table 3.2, yields
a price dynamics characterised by a unit root, as in the previous section (the
ADF test doesn’t reject the null with p-value < 0.001). Note that we set the
value of µC > 0. Reasonably, the overall sentiment among the crowd of chartists
generates a self-reinforcing dynamics, rather than a self-opposing one.11

Fig. 3.2 shows the relevant plots under this scenario. As expected, the evolu-
tion of the price series is more “centred” around the fundamental value pF with
respect to the NT scenario thanks to the fundamentalists’ anchoring behaviour
(panel (a)). However, the presence of chartists introduces a persistence character
in the dynamics of returns: the presence of both trend followers and contrarians
is crucial because their effect on the autocorrelation function of returns cumu-
lates in absolute value, but cancels out when the sign is taken into account. This
is clearly visible in panels (c) and (d).12 Intuitively, while we allow a slight im-

11Moreover, as will become clear later in Section 3.4.4, we find that this assumption fosters the
fat-tailedness character of inter-trades durations, and thus helps in replicating stylised fact
SF9.

12In a separate experiment (not shown) we set wC
i ∼ ± |N (µC,σ2

C)|, i.e. we include either trend-
followers or contrarians but not both. In this case we find that the autocorrelation function
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Figure 3.2.: Main stylised facts under the fundamentalists vs. chartists scenario.
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Parameter Value

number of traders N = 1,000

fundamental price pF = 100

initial price p0 = pF

smallest price change tick = 0.001

horizon/order validity h = 1,000

noise process εt ∼N
(
µε = 0, σ2

ε = 5e-5
)

fundamentalist weight wF
i ∼

∣∣N (µF = 0, σ2
F = 0.001

)∣∣
chartist weight wC

i ∼N
(
µC = 0.01, σ2

C = 0.1
)

activation threshold δt→ +∞

activation fallback probability φ = 1

Table 3.2.: Parameters and initial conditions for the FC scenario.

balance between followers and contrarians, a larger imbalance would have the
effect of adding memory to the autocorrelation function of (raw) returns, which
is contradicted by empirical evidence. The average number of price changes,
14187, is in line with the previous scenario. In contrast, the kurtosis of minute
returns increases to 17.45, thus replicating SF1.13

Finally, the statical properties reported in panels (e), (f), (g), (h), (i), and (j) are
qualitatively similar to the NT case. This indicates that the timing structure of
orders submission and matching is not substantially influenced by the presence
of the new behavioural specification; exchanged volumes display no persistence
character either.

The second column on the right of Table 3.4 summarises the list of stylised
facts reproduced with the introduction of fundamentalist and chartist strategies.
The improvement with respect to the noise traders scenario is clear: volatility
clustering and leptokurtosis of price returns are now correctly matched. How-
ever, more structure is needed if one wants to reproduce also orders’ timing and
clustering properties.

of returns (panel (c)) and of absolute returns (panel (d)) look very similar and thus fail to
validate our target stylised facts SF2 and SF3.

13The kurtosis decreases with the time window and reverts back to 3, i.e. to statistical normality,
for 15-minute returns.
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Parameter Value

number of traders N = 1,000

fundamental price pF = 100

initial price p0 = pF

smallest price change tick = 0.001

horizon/order validity h = 1,000

noise process εt ∼N
(
µε = 0, σ2

ε = 5e-5
)

fundamentalist weight wF
i ∼

∣∣N (µF = 0, σ2
F = 0.001

)∣∣
chartist weight wC

i ∼N
(
µC = 0.01, σ2

C = 0.1
)

activation threshold δt ∼
∣∣N (µδ = 0, σ2

δ = 0.3
)∣∣

activation fallback probability φ = 1/3

Table 3.3.: Parameters and initial conditions for the EA scenario.

3.4.3. Endogenous activation

In this final scenario, which we label EA, we assume that fundamentalists and
chartists endogenously activate according to the scheme outlined in Section
3.3.2. Table 3.3 summarises the specific parametrisation that we employ in this
scenario. The ultimate goal is to retain the properties encountered in the previ-
ous scenarios and, in addition, to replicate those properties related to the dura-
tion and clustering of orders and those about the volumes of trade.

The endogenous activation scheme captures one ever more common high-
frequency nature of financial markets (see Easley et al., 2012). A crowd of
traders, many of which are algorithmic machines, typically responds very
quickly to a newly posted signal and engages in trading for a while until co-
ordination on a new price has emerged.14

Fig. 3.3 pictures the relevant plots under this scenario. Panels (a) to (d) are
qualitatively similar to those of scenario FC, suggesting that the good proper-

14In principle, such a signal can arise either from within the order book, e.g. as a disruptive
newly submitted order, or from outside, in which case it is related to fundamental news about
the asset. Empirically, it has been shown that only a fraction of realised volatility is attribut-
able to freshly available news about dividends, prospective earnings, or other crucial balance
sheet and macroeconomic variables (see e.g. Cutler et al., 1989; Shiller, 1981). In our model
no news is ever released and all traders agree on a constant fundamental value; thus, all the
signals come from within the order book, and are the result of sheer trading activity by the
traders. The totality of the generated volatility is excess volatility.
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Figure 3.3.: Main stylised facts under the fundamentalists vs. chartists scenario
with endogenous activation.
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ties about price and returns generated in the latter setting have not been com-
promised by the new activation assumption. Leptokurtosis has increased to a
minute-by-minute figure of κ ≈ 72.33, decreasing to around 6.5 for 15-minute
returns, and 3.7 for 30-minute returns. The average number of price changes,
11272, has decreased as a result of the new participation scheme, but is still a
perfectly acceptable level for liquid traded securities (Cont, 2011).

The main benefits of endogenous activation are noticeable in the subsequent
panels of Fig. 3.3. For the first time, panel (e) shows a strong and very slowly de-
caying autocorrelation in inter-trade durations (SF8), and the quantile-quantile
plot in panel (f) suggests that the tail of their distribution is fatter than expo-
nential (SF9). Moreover, both volumes (panel (g)) and order-flow (panel (h)) are
clustered (matching respectively SF5 and SF10). Panel (i) shows a positive and
significant relationship between volumes and volatility (p-value < 0.001) (as per
SF6). An analogously significant relationship holds also for pooled series at 15-
minute and 30-minute level. Finally, the boxplot in panel (j) suggests a slight
improvement with respect to the previous scenarios: the correlation coefficient
for the first 10 lags is negative and increasing for the majority of our Monte
Carlo simulations. Nonetheless, since the ‘whiskers’ of the plot (denoting the
± 1.5 · IQR markers of the underlying distribution) are very spread apart, we
conservatively consider SF4 as not matched.

The rightmost column of Table 3.4 suggests that most of the stylised facts de-
scribed in Section 3.2 are successfully reproduced by this version of the model.
In particular, the emergence of the properties about orders’ duration and clus-
tering is very much linked to the dynamics induced by endogenous activation
in this scenario. Indeed, the level of the variance of the distribution of agents’
activations thresholds, σ2

δ = 0.3, is such that, on average, exactly one trader
is endogenously activated at time t in response to a realised absolute return
|rt−1| ≈ 0.000375, whereas the average absolute return in the FC scenario is ap-
proximately 0.0003. This means that most of the time traders are not endogen-
ously activated, and the fallback exogenous activation scheme takes over, with
probability φ = 1/3. However, due to the leptokurtic nature of returns (SF1),
there exist periods in which a much larger-than-average price change takes
place, and a multitude of traders are willing to submit new orders at the same
time. Moreover, the price change generated by such turbulent event is likely to
be itself larger than the δt threshold for a number of traders, possibly triggering
a new wave of crowded endogenous activation in the next period, ultimately
lengthening the duration of the price adjustment process.
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3. An agent-based model of intra-day financial markets dynamics

scenario
stylised fact NT FC EA

SF1 leptokurtic returns 7 3 3

SF2 no linear autocorr. 3 3 3

SF3 volatility clustering 7 3 3

SF4 leverage effect 7 7 7

SF5 autocorrelation of volumes 7 7 3

SF6 volume/volatility correlation 7 7 3

SF7 number of price changes per day 3 3 3

SF8 autocorrelation of durations 7 7 3

SF9 fat-tailed durations 7 7 3

SF10 order-flow clustering 7 7 3

SF11 U-shaped activity 7 7 7

Table 3.4.: Replication of the target stylised facts within all the simulated scen-
arios.

3.4.4. Sensitivity analysis

In this section we briefly discuss the effect of varying, one at a time, the main
parameters of the model15 in a neighbourhood of the parametrisation used in
the most complete scenario, i.e. EA scenario, with endogenous traders’ activ-
ation (cf. Table 3.3). For each of the discussed parameters, we present plots
showing the change in the relevant statistics of the simulation and we relate it
to the stylised facts of financial markets.

Changes in the variance of the fundamentalists’ weights, σ2
F

In the limit of σ2
F → 0, the price becomes less “anchored” to the fundamental

value. In this extreme case the persistence of volatility (absolute returns), of
volumes, of trade durations, and of the order flow, the number of price changes,
and the leptokurtic signature of returns are maximised. The plot in panel (a) of
Fig. 3.4 shows the number of statistically significant lags (at the 95% confidence
level) as a function of of σ2

F for each of the autocorrelation functions calculated in
the EA simulation scenario (cf. Fig. 3.3). Autocorrelations computed on minute-

15We also experimented with changes in other parameters of the model besides the ones dis-
cussed in this section. We do not report the results of these additional sensitivity analyses
here. However, they are available from the authors upon request.
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Figure 3.4.: Sensitivity analysis for σ2
F. Other parameters as per the EA scenario.

by-minute data (namely returns, absolute returns, and volumes) refer to the left
scale. Those computed on tick data (namely durations and order flow) are on
the right scale. In addition, panel (b) depicts the effect of σ2

F upon the number of
price changes per day (left scale) and the minute returns’ kurtosis (right scale).
All measures are averages across 100 Monte Carlo simulations for each value of
the underlying parameter.

From the analysis of the above mentioned figures it is clear that as σ2
F grows,

fundamentalists counteract the effect of technical traders and all the considered
statistics either decrease or remain unchanged. It is also clear from the picture
that σ2

F has not effect whatsoever on the persistence of raw returns.

Changes in the variance of the chartists’ weights, σ2
C

At very low values of σ2
C and with µC > 0 the distribution of chartists’ weights is

significantly skewed towards trend-following strategies.This causes raw returns
to be autocorrelated for several lags (see Fig. 3.5(a), left scale). As σ2

C increases
the distribution of the chartists’ strategies tends to be more balanced between
trend-followers and contrarians. This decreases the autocorrelation of raw re-
turns without significantly influencing the persistence of either absolute returns
and of traded volumes.

At the same time, the extent of chartists’ disagreement about future returns
increases with σ2

C, because the weights of followers and contrarians are located
farther and farther away from one another. Cœteris paribus, this increases the
occurrence of abnormal returns (cf. Fig. 3.5(b)). In addition, abnormal returns
and the mechanism of endogenous activation (see Sections 3.3.2 3.4.3) encourage
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Figure 3.5.: Sensitivity analysis for σ2
C. Other parameters as per the EA scenario.

several traders to post their orders simultaneously. This increases the number
of price changes per day and generates persistence in inter-trade durations and
in order flows (see Fig. 3.5(a), right scale).

Changes in the variance of traders’ activation thresholds, σ2
δ , and of the

fallback probability φ

These two parameters jointly regulate both the total amount of trade that takes
place in the market and the timing structure thereof. First, note that, by defini-
tion δi,t ∼ |N (0,σ2

δ )|, and therefore E[δi,t] is an increasing function of σ2
δ . In the

limit of σ2
δ → ∞), δt → ∞ and activation is never endogenous and the average

amount of trade and of price changes in the market is cœteris paribus, a mono-
tonically increasing function of φ (cf. the dashed red line in Fig. 3.6(b)). If φ = 0
then, trivially, no trader is ever activated and no trade takes place; if instead
φ = 1 the amount of trade is maximised, under the assumption of uniform ac-
tivation: exactly one trader is activated in every period (cf. scenarios NT and FC)
and both volumes and the number of transactions (a superset of the number of
price changes) are bounded from above by t.

Furthermore, when σ2
δ is large δi,t is also large on average. In this case inter-

trade times exhibit little serial correlation (cf. Fig. 3.7(a)). In the opposite limit,
δt = 0, all traders are instead active at every time step (regardless of φ), and the
number of transactions is maximised and bounded from above by N · t. Finally,
lower average values of δt cause larger crowds of traders to participate in re-
sponse to a given signal, boosting the number of price changes (cf. Fig. 3.7(b)).
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Figure 3.6.: Sensitivity analysis for φ. Other parameters as per the EA scenario.
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Figure 3.7.: Sensitivity analysis for δ. Other parameters as per the EA scenario.

As a result, both the order-flow and trading times tend to cluster (see again
Fig. 3.7(a)).

Changes the investment horizon and orders’ validity: h

The shorter the order’s validity h, the fewer the orders stored on the book at all
times. Accordingly, the number of price changes per day decreases as a function
of h (cf. Fig. 3.8(b)).

Furthermore, the parameter h also sets the memory span of chartists
(cf. eq. (3.3.2)). An increase in this parameter thus leads the latter to exacerbate
small trends in prices. This is because cumulative returns over longer periods
tend to be larger than returns over short periods in presence of some positive
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Figure 3.8.: Sensitivity analysis for h. Other parameters as per the EA scenario.

autocorrelation. Accordingly, the higher h, the more likely expected returns
between time t and t + h are large in absolute terms, and the farther is the limit
price of newly submitted orders with respect to the current price. This effect,
combined with the endogenous activation mechanism, contributes to the per-
sistence of absolute returns, volumes, orders’ duration and sides, which are all
observed for small increases in h when starting from a low base value of h = 100
(see Fig. 3.8(a)). It also explains the increase in the returns kurtosis displayed in
(cf. Fig. 3.8(b)).

Nevertheless, the above effects quickly vanish with further increases in h. In-
deed, the number of significant lags in (raw) returns autocorrelation quickly
decays, eventually stabilising at a low value of 1 already for h around 100. In
addition, the degrees of persistence in absolute returns and in order flow and
durations also converge to a stationary value. Finally, the kurtosis of price re-
turns evolves non-monotonically with h, eventually returning to the same low
value observed at h = 100. Notice that in the EA scenario we set h = 1000. It
follows that increases in the value of h in that scenario have no significant effects
on the autocorrelation functions of the main market variables we consider.

3.5. Concluding remarks

The distinctive statistical properties that shape financial market dynamics at
daily and intra-daily frequencies have been typically attributed to the spe-
cific patterns of information release and its diffusion among the population of
traders. We show that many such properties can be simultaneously reproduced
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in a framework wherein fundamental news are absent and information, origin-
ating from within the financial market (as the by-product of trading activity)
is common knowledge. We build a parsimonious agent-based model in which
trading and its statistical properties emerge endogenously out of the interaction
between fundamentalist and chartist strategies on the one hand, and a realistic
market microstructure specification on the other hand.

A novel element that we introduce is the definition of simulation time in terms
of a strict schedule that we borrow from the microstructural specification of a
real stock market, namely the EURONEXT. We believe this plausibly relates each
iteration of our numerical simulations to proper calendar time, and enables us
to investigate which properties apply within a specific time-window and how
they evolve at different time-scales. We also devise a simple endogenous activa-
tion scheme that encourages traders participation in an increasing fashion with
realised profit opportunities.

We find that our assumptions regarding the underlying microstructure intro-
duce a slight dependence in the series of returns, which quickly fades away
within a couple of minutes. We also find that the fundamentalist vs chartist
framework is suitable for replicating the empirically validated dependence
properties of returns (leptokurtosis, absence of linear autocorrelation, and volat-
ility clustering). Nonetheless, the introduction of our endogenous participation
scheme proves crucial for the emergence of the persistence character in the tim-
ing structure of market activity. Under this scenario we are able to simultan-
eously reproduce, along with the stylised facts just mentioned, the fat-tailed
and serially correlated nature of durations between trades, and the clustering of
both volumes and order-flow.

We believe that our framework can be fruitfully extended in several direc-
tions. First, our model cannot reproduce, by construction, the U-shaped pattern
of intra-day market activity. More stringent assumptions regarding the traders’
budget constraint or the introduction of a time feedback that puts pressure on
traders close to the end of the trading day (e.g. due to margin requirements)
could be useful in this respect. Similarly, a more structured specification of
chartists’ behaviour might unveil a more asymmetric response of volatility with
respect to price drops and surges (leverage effect). Finally, in this chapter we
only considered the ability of the model to qualitatively replicate the main stat-
istical properties of financial markets. However, one could further fine-tune the
calibration of the parameters of the model by exploiting actual financial data.
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This might allow one to perform quantitative experiments on regulatory policies
affecting market microstructure or trading behaviour.
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4
A 2-step functional principal component analysis

of intra-day volatility trajectories1

4.1. Introduction

The extent to which a certain asset or investment is expected to yield dispersed
uncertain returns constitutes a top concern in the decision making of virtually
any financial actor, ranging from practitioners to policymakers. To mention a
few, returns volatility enters the decisions of investors and risk managers when
considering the purchase of a financial instrument, of banks and financial insti-
tutions when issuing and pricing a new derivative, and of central banks and fin-
ancial regulators who are committed to maintaining orderly operations within
the financial system. Although the traditional use of volatility as a proxy for
risk has inevitably attracted a negative connotation, volatility itself can be re-
garded as a commodity and consequently can be priced and exchanged as such.
Tradable instruments replicating the implied volatility of underlying assets and
the so-called volatility arbitrage have increasingly gained popularity in recent
times, especially among high-frequency traders. The value attached to under-
standing the emergence and evolution of volatility over time is therefore tauto-
logically justified by the enormous amount of wealth at stake.

In this contribution we study intra-day volatility trajectories from two major
financial markets along the lines of recent developments in functional data ana-
lysis (FDA). Volatility is not an observable phenomenon and as such it can not
be directly inferred from discretely observed tick data. Strictly speaking, the
theoretically observable quadratic variation would require continuous monit-
oring of the underlying log-price process. Within traditional volatility models

1This chapter is a joint work with Matteo Barigozzi (Department of Statistics, London School
of Economics and Political Science, London, UK).
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(see e.g. Bandi and Phillips, 2003; Florens-Zmirou, 1993; Renò, 2008), it is gener-
ally assumed that the volatility process is functionally linked to some observed
state variable, such as prices or returns. Most of these models, however, target a
single realisation of the volatility process whereas we aim at modelling repeated
intra-day realisations thereof. FDA comes to rescue as it provides rigorous stat-
istical tools that are naturally adapted to the analysis of collections of smooth
continuous curves, all defined over the same support. In our framework these
curves consist of individual intra-day volatility trajectories observed over mul-
tiple trading days, each sharing the same duration.

To the best of our knowledge, Müller et al. (2011) is the first and only piece of
research that applies this methodology to the investigation of intra-day volatil-
ity curves. They first devise a general diffusion model with drift for log-returns
of a single financial security that targets repeated realisations of the underlying
process. This model is then discretised and applied to real data on the S&P500
index, yielding a sample of intra-day time series which are then transformed
into continuous functional objects by means of a smoothing algorithm. Finally,
the resulting collection of curves is studied in a principal component fashion.

Our work proceeds along similar steps as Müller et al. (2011) although we
extend their contribution in a number of directions. First, we generalise their
framework, focussed on a single market index, in order to allow for the joint
investigation of an arbitrarily large collection of assets, e.g. all the constituents
of the underlying index. This upgrade, which serves as our baseline model,
dramatically complicates the analysis since it brings an additional dimension to
the collection of curves, beyond the daily repeated realisations. We tackle the
issue by devising a 2-step procedure based on functional principal component
analysis: the first step reduces the dimensionality across days while the second,
applied to the output of the first step, reduces the dimensionality across assets,
yielding a single set of curves that contain most of the information embedded
in the original trajectories. In particular, we focus on the relative contribution
of the mean and of the first functional principal component, in predicting the
original volatility trajectories of the individual assets. Our second improvement
consists of fitting a CAPM-inspired factor model to the data in order to separ-
ate the market component of the constituents’ volatility, namely the part that
correlates with the index as a whole, from the residual idiosyncratic compon-
ent, and study these distinct parts both independently and jointly. The analysis
of the 1-dimensional market component is similar to the exercise carried out in
Müller et al. (2011), while the 2-dimensional idiosyncratic component requires
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the aforementioned 2-step dimension reduction procedure. The output of the
latter allows the analysis of the so-called common idiosyncratic volatility (CIV),
i.e. the part of idiosyncratic returns volatilities that is common across assets, and
to quantify its contribution, if any, in shaping the original volatility trajectories.2

Finally, we apply our extended theoretical framework to the empirical investig-
ation of two major financial market indices for which we have high-frequency
tick data available for all the underlying constituents, namely the S&P500 and
the EURONEXT 100. While we proceed with a parallel and independent analysis
of the two markets, a preliminary international comparison of the underlying
volatility patterns is drawn.

Our results are as follows. First, we show that our baseline model outper-
forms the one proposed by Müller et al. (2011) in predicting the original, asset-
specific volatility trajectories. This result is not surprising since the latter model,
which corresponds to the market volatility branch of our extended model, ex-
ploits far less information with respect to the former. Second, more importantly,
we show that our extended model, based on the CAPM-inspired distinction of
market and idiosyncratic volatilities greatly improves the prediction perform-
ance with respect to the baseline model, even though it exploits the very same
original information. Third, we show that within the second step of our 2-step
procedure the loss of information due to dimension reduction is virtually nil.
This implies that the resulting single curve, representing the CIV, incorporates
all the information relevant for the prediction of the original volatility traject-
ories that is embedded in all the asset-specific functional principal components.
Moreover, we show that in all the various models presented, the contribution
given by the first functional principal component, even discarding higher or-
ders’ components, substantially improves the prediction of the original traject-
ories with respect to using the mean in isolation. Finally, a visual analysis of the
various functional principal components involved in our procedure and their
corresponding loading coefficients gives some insight about some of the ‘styl-
ised facts’ that financial markets’ data typically exhibit, such as the U-shaped
intra-day activity motive and volatility clustering, and the patterns of interna-

2Herskovic et al. (2016) consider a large panel of stocks over the period 1926–2010. After es-
timating a factor model on daily returns (using either the value-weighted market portfolio,
the 3 Fama and French factors, or the first five principal components of the cross section
of returns) they find a substantial degree of common variation in the residuals, both across
firm-size quantiles and industry group. Barigozzi and Hallin (2016) obtain similar results
for the S&P100 index and find that the magnitude of the CIV is more pronounced during
periods of financial turmoil, such as the great financial crisis of 2008–2009.
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tional substitution and complementarity in place between the American and
European stock markets under study.

A number of contribution are close to ours in spirit. Kokoszka et al. (2014)
propose a functional dynamic factor model of intra-day cumulative returns, a
stationary proxy for intra-day prices, for a selection of US stocks. Hays et al.
(2012) propose a similar model for zero-coupon bond yield curves. Aït-Sahalia
and Xiu (2018) study the high-frequency covariance structure of the constituents
of the S&P100 index by conducting principal component analysis on a weekly
basis.

The remainder of the paper is organised as follows. Section 4.2 outlines the
whole theoretical architecture of our framework, which is then exploited for the
empirical applications on market data in Section 4.3. In particular, Section 4.3.1
investigates what we call the baseline model, while sections 4.3.2 and 4.3.3 are
devoted, respectively, to the market and idiosyncratic volatility branches of our
extended model. The prediction performance of the various models is quantit-
atively assessed in Section 4.4. Finally, Section 4.5 concludes and lays down a
few conceivable extensions.

4.2. Model

We first devise in the next subsection a diffusion model with drift for log-returns
from which we obtain the distinct measures of market volatility and individual
assets’ idiosyncratic volatility. In Section 4.2.2 we briefly give some background
on functional data analysis and we construct the functional curves describing
the aforementioned volatility measures. Finally, we outline in Section 4.2.3 the
dimension reduction techniques, based on functional principal component ana-
lysis, which define our models for the original volatility trajectories.

4.2.1. A di�usion model with dri� for repeated volatility
trajectories

Müller et al. (2011) propose the following stochastic diffusion model with drift
for log-returns:

dlog X j(t,ω) = µj(t,ω)d t + σj(t,ω)dWj(t,ω) (4.2.1)

where the arguments ω ∈ Ω highlight the stochastic nature of the underlying
processes, X j(t,ω) denotes the intra-day price of the S&P500 index at time t ∈
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[0, T] on day j = 1, . . . , J, µj(t,ω) and σj(t,ω) are i.i.d. copies of the usual drift and
variance processes, and Wj(t,ω) are independent standard Wiener processes.

In our contribution we extend eq. (4.2.1) in two ways. First, instead of consid-
ering uniquely the reference index, we study, together with the index itself, all
the distinct securities i = 1, . . . , I the index consists of. Second, we distinguish
the market component, i.e. the part of the return that correlates with the index,
from the idiosyncratic component of the return, i.e. the residual part that doesn’t
correlate with the index.

For every asset i in the index, we estimate the following factor model of indi-
vidual log-returns (we will drop the explicit dependence on ω hereafter for the
only purpose of notational convenience):

dlog Xij(t) = βi ·Mj(t) + eij(t) (4.2.2)

from which we filter out the common market component Mj(t) := dlog X j(t)
and obtain the idiosyncratic returns component eij(t). As already pointed out,
the βi parameters’ estimates can be interpreted as the usual CAPM betas. We
then apply the same stochastic diffusion model with drift of eq. (4.2.1) to both
the market index returns Mj(t) and the residual idiosyncratic returns eij(t),
thereby obtaining I + 1 distinct measures of volatility. Accordingly, we assume
the following augmented stochastic diffusion model with drift:

dlog Xij(t) = βi ·
[
µj(t)d t + σj(t)dWj(t)

]
︸                             ︷︷                             ︸

market volatility

+µij(t)d t + σij(t)dWij(t)︸                            ︷︷                            ︸
idiosyncratic volatility

(4.2.3)

As customary in the literature, we further assume that market data is observable
at short regular time intervals ∆, justifying the asymptotic assumption ∆ → 0,
and we define the generic discretised version of log-returns and diffusion terms
as follows:

X∆
ijt =

1√
∆

log

(
Xij(t + ∆)

Xij(t)

)
(4.2.4)

W∆
ijt =

Wij(t + ∆)−Wij(t)√
∆

(4.2.5)

where the subscript t = 1, . . . , T/∆ denotes regularly ∆-spaced intra-day times
and the market diffusion term W∆

jt is defined as the straightforward single-asset
restriction of eq. (4.2.5). The discretised version of eq. (4.2.3) therefore reads:

X∆
ijt =

βi√
∆
·
[∫ t+∆

t
µj(v)dv +

∫ t+∆

t
σj(v)dWj(v)

]
+

1√
∆
·
[∫ t+∆

t
µij(v)dv +

∫ t+∆

t
σij(v)dWij(v)

]
(4.2.6)
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Following Müller et al. (2011, Lemma 1), under suitable regularity assumptions3

eq. (4.2.6) can be approximated by

X∆
ijt ≈ βi · σjt W∆

jt + σijt W∆
ijt (4.2.7)

which we redefine for notational convenience as

X∆
ijt = βi ·M∆

jt + e∆
ijt (4.2.8)

Note that eq. (4.2.8) essentially constitutes a discretised form of eq. (4.2.2). The
usual smooth generic log-volatility process V(t) = log

[
σ(t)2] can be therefore

approximated by the discrete series

V∆
jt = log

[(
M∆

jt

)2
]

(4.2.9)

for market volatility on trading day j and

V∆∗
ijt = log

[(
e∆

ijt

)2
]

(4.2.10)

for the I × J idiosyncratic volatilities.

4.2.2. Functional data analysis

The field of functional data analysis (FDA) provides a collection of statist-
ical techniques that are well suited for analysing processes that are continu-
ous in their very nature and can be sampled at high frequencies (for an in-
troduction we refer the reader to Ramsay and Silverman, 2005). Volatilities
of financial securities arguably satisfy these requirements. While volatility it-
self is not a directly observable phenomenon, it can be approximated, starting
from high-frequency (observable) prices, using the aforementioned procedure
(see eqs. (4.2.3) to (4.2.10)).

A continuous measure of the underlying volatility processes can then be ap-
proximated by a Λth-order Fourier series over the interval [0,1] as follows:

V j(t) ≈ αj +
Λ

∑
λ=1

γjλ · cos
(

2πλt
T

)
+

Λ

∑
λ=1

δjλ · sin
(

2πλt
T

)
(4.2.11)

V∗ij (t) ≈ α∗ij +
Λ

∑
λ=1

γ∗ijλ · cos
(

2πλt
T

)
+

Λ

∑
λ=1

δ∗ijλ · sin
(

2πλt
T

)
(4.2.12)

3The assumptions on the underlying generic processes µ(t) and σ(t) include uniform Lipschitz
continuity of order 1, boundedness, and smoothness and boundedness of derivatives of σ(t).
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Coefficients α’s, γ’s and δ’s are chosen to minimise the distance with the original
discrete series V∆

jt and V∆∗
ijt , e.g. by penalised least squares.

The [(I + 1)× J]-dimensional collection of V j(t)’s and V∗ij (t)’s begs for some
dimensionality reduction to be analysed properly. Within the FDA toolbox, the
functional counterpart of the usual principal component analysis (PCA) comes
at hand. While PCA constructs a K-dimensional summary of a p-dimensional
random vector, with p > K, functional principal component analysis (FPCA)
approximates a generic continuous, and thus intrinsically infinite-dimensional
real valued curve Y(t) with the finite-dimensional object

Y(t) ≈ µ(t) +
K

∑
k=1

ξk · φk(t) (4.2.13)

where µ(t) is the mean function of Y(t), φk(t) are the eigenfunctions of Y(t),
defined over the same domain, and ξk are the associated loading coefficients.
This result is based on the Karhunen-Loève theorem which states that a centred
continuous stochastic process Y(t) : [a,b]→R admits the infinite representation

Y(t) =
∞

∑
k=1

ξk · φk(t)

where ξk are pairwise uncorrelated random variables and φk(t) are continuous
real-valued functions on [a,b] and pairwise orthogonal in L2([a,b]).

4.2.3. Functional principal component analysis of volatility
curves

When the underlying functional objects consist of Fourier series as in our case
(cf. eqs. (4.2.11) and (4.2.12)), FPCA amounts to performing the usual PCA
eigen-decomposition on the collection of vectors of Fourier coefficients. For
market volatilities V j(t) this correspond to decomposing the 2-dimensional
array {αj,γj1, . . . ,γjΛ,δj1, . . . ,δjΛ} and for idiosyncratic volatilities V∗ij (t) the 3-
dimensional array {α∗ij,γ∗ij1, . . . ,γ∗ijΛ,δ∗ij1, . . . ,δ∗ijΛ}. We set K = 1, i.e. we focus
uniquely on the first functional principal component of each of the volatility
measures. While this assumption seems restrictive, the first component is by
construction the most informative about the original process and, as we shall
show in the following, it is convenient for the subsequent analysis of the com-
mon idiosyncratic volatility. The estimate of the market volatility reads:

V̂ j(t) = µ(t) + aj · φ(t) (4.2.14)
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The eigenfunction φ(t) captures the principal mode of variation of the index
volatility and coefficients aj represent their daily loadings. Except for the K =

1 restriction, this estimate is analogous to the one performed in Müller et al.
(2011). In a similar fashion, the estimates for the I idiosyncratic volatilities read:

V̂∗ij (t) = µ∗i (t) + bij · φ∗i (t) (4.2.15)

Here we obtain I principal eigenfunctions, one for each of the index constitu-
ents. In order to investigate the common idiosyncratic volatility, we perform a
second FPCA on the φ∗i (t) principal eigenfunctions, obtaining

φ̂∗i (t) = ci · ψ∗(t) (4.2.16)

The new eigenfunction ψ∗(t) should capture, if present, any residual comove-
ment in idiosyncratic volatilities, i.e. in the volatility of single securities after
the market component has been filtered out. From eqs. (4.2.15) and (4.2.16) it
is possible to estimate the idiosyncratic volatilities V∗ij (t) by using only the (par-
tial) information contained in the common idiosyncratic volatility eigenfunction
ψ∗(t):

̂̂V∗ij(t) = µ∗i (t) + (bij · ci) · ψ∗(t) (4.2.17)

For the sake of completeness, we also estimate the following benchmark model
in which we include the information about each single security but without dis-
tinguishing the market component from the idiosyncratic components of volat-
ility:

V̂ij(t) = µi(t) + dij · φi(t) (4.2.18)

φ̂i(t) = hi · ψ(t) (4.2.19)̂̂Vij(t) = µi(t) + (dij · hi) · ψ(t) (4.2.20)

where the target measure of volatility is the functional counterpart of

V∆
ijt = log

[(
X∆

ijt

)2
]

(4.2.21)

In the following section we fit all the aforementioned functional model to real
financial data in order to compare, in Section 4.4, their relative performance in
capturing the actual trajectories of intra-day volatility.

92



4. A 2-step functional principal component analysis of intra-day volatility trajectories

4.3. Data and empirical application

In this application we estimate the models outlined in the previous section on
real data from two separate market indices, the S&P500 and the EURONEXT 100.
Both indices list liquid blue chips traded on American and European stock ex-
changes, respectively. We have available tick data about trades that took place
between 24th May and 8th December 2017 for all the constituents of the indices,
amounting to 1,559,379,085 data points across 139 trading days for the S&P500
and 109,946,543 data points across 143 days for the EURONEXT 100. A trading
day consists of different phases with distinct microstructural pricing mechan-
isms, such as order accumulation periods with no price announcements at the
beginning and end of the trading day, each followed by a batch auction, and
an open market session in which continuous double auction pricing is in place,
and a new price emerges as soon as a trade is successfully executed. Since our
interest is on intra-day volatility, we focus uniquely on the latter phase, last-
ing T = 6½ hours for the S&P500 and T = 8½ hours for the EURONEXT 100.
We therefore perform some data cleaning on the original dataset along the lines
of Gallo and Brownlees (2006) and we single out regular trades from the open
market session. We drop two trading days from the S&P500 due to early clos-
ing4 and one from the EURONEXT 100 due to a brief market-wide suspension,
along with a few securities that experienced trading suspensions in our refer-
ence period, ending up with I = 502 stocks (out of 505) and J = 137 days for the
S&P500 index and I = 93 stocks (out of 100) and J = 142 days for the EURONEXT

100. Starting from irregularly spaced tick data, we construct regular time series
of log-returns at ∆ = 5-minute intervals as per eq. (4.2.4), totalling T/∆ = 78
figures per day for the S&P500 and T/∆ = 102 for the EURONEXT 100.5 These
regular time series are shown for later reference in Fig. 4.1. Our chosen measures
of volatility are then computed according to eq. (4.2.21) for the baseline model
and to eqs. (4.2.9) and (4.2.10) for our extension, after fitting the factor model in
eq. (4.2.8) and singling out the idiosyncratic component e∆

ij(t) from the market
component M∆

j (t). Since with have available actual observations of the refer-
ence market index, i.e. of the value-weighted market portfolio, we fit the linear

4Early closing occurred on 3rd July (the day before Independence day) and on 24th November
(the day after Thanksgiving).

5Following Aït-Sahalia et al. (2005) a 5-minute interval seems a good choice and is the de
facto standard in the literature. Note however that the time series will undergo substantial
smoothing when constructing the relevant functional objects and any residual microstruc-
ture noise is likely to be lost in the process.
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Figure 4.1.: 5-minute log-returns of the S&P500 (left) and EURONEXT 100 (right)
indices.
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Figure 4.2.: Intra-day volatility curves V j(t) of the index for all available trading
days j; S&P500 (left) and EURONEXT 100 (right).

model in eq. (4.2.8) using these data as the independent variable. The obtained
series serve as the input of our functional data analysis.

To construct the functional counterpart of the volatility series, we fit a Λ = 7-
th order Fourier series (i.e consisting of 1 constant term and 14 sines and co-
sines Fourier bases) to the empirical data by means of penalised least squares,
as implemented in the fda package6 (see also Ramsay et al., 2009). An identical
procedure is also followed by Hörmann et al. (2014). Fig. 4.2 shows the ob-
tained functional volatility trajectories V j(t) for all the available trading days
j = 1, . . . , J of the S&P500 (left panel) and the EURONEXT 100 (right panel) in-
dices. Although the picture looks confusing at a first glance since a large mul-
titude of curves are plotted at once (137 and 142, respectively), a clear tendency
is apparent. Most of the trajectories overlap in a U-shaped fashion, suggesting

6https://cran.r-project.org/package=fda
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that volatility is higher during early and late hours, i.e. in the vicinity of mar-
ket opening and closing, and lower around halfway in the trading day. Such a
seasonal effect is well known in the financial literature and constitutes a fairly
robust ‘stylised fact’ (see e.g. Jain and Joh, 1988; Lockwood and Linn, 1990).
Another feature that becomes evident at a second glance is that the U-shaped
property holds on average but does not apply to every single trading day. Many
‘outliers’ can be identified in both markets, displaying crests and troughs at vir-
tually any time throughout the trading session. These are likely related to the
timing of release of fundamental news about the constituents of the indices. It
is worth noting however that our choice of Fourier bases for constructing the
functional trajectories, as opposed to e.g. kernel-based methods, emphasises the
oscillatory motion of the curves and their peaks therein.

The remainder of this section is organised as follows. In the next subsection
the baseline model is fitted to data for the sake of comparison with our exten-
ded model, which is estimated separately in its market volatility component
(Section 4.3.2) and idiosyncratic volatility component (Section 4.3.3).

4.3.1. Baseline model

The baseline model exploits all the available information, in the sense that all the
data concerning single constituents of the index is included. However, we don’t
single out the underlying market and idiosyncratic volatilities, and therefore
these measures remain essentially confounded. Following the principal com-
ponent decomposition in eq. (4.2.18), we proceed by identifying the mean func-
tions µi(t) and the eigenfunctions φi(t), one for each of the constituents i of the
index, and the loading coefficients dij of these latter, one for every asset i and for
every trading day j. The curves in Fig. 4.3 denote the individual constituents’
mean functions. As expected, the U-shaped tendency mentioned in the previ-
ous section is evident and applies on average to all securities. With respect to
the S&P500 (left panel) and with the exception of a single outlier which exper-
ienced a substantially lower volatility throughout our reference period (corres-
ponding to News Corp, an American entertainment and mass media company),
the overall bundle of trajectories looks quite compact, implying a roughly uni-
form distribution of average volatility among the various assets. Differently, the
curves relative to the EURONEXT 100 appear more disperse, suggesting a more
fat-tailed distribution thereof. The thin lines in Fig. 4.4 picture all the relevant
principal eigenfunctions φi(t). By construction the eigenfunctions are defined
up to their sign; this in general brings up an identification problem. However,
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Figure 4.3.: Mean functions µi(t) obtained by estimating the baseline model;

S&P500 (left) and EURONEXT 100 (right).

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

time

lo
g−

vo
la

ti
lit

y

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5

time

lo
g−

vo
la

ti
lit

y

Figure 4.4.: Eigenfunctions φi(t) obtained by estimating the baseline model and
their principal eigenfunction ψ(t) (thick curve); S&P500 (left) and
EURONEXT 100 (right).

96



4. A 2-step functional principal component analysis of intra-day volatility trajectories

days

se
cu

ri
ti

es

days

se
cu

ri
ti

es

Figure 4.5.: Heatmap of the loading coefficients dij within the baseline model;
S&P500 (left) and EURONEXT 100 (right). Darker shades denote lar-
ger magnitudes.

since we are only interested in the first principal eigenfunction of every security
and given that the original volatility trajectories are defined in R++, we keep
untouched those eigenfunctions whose constant term (of the underlying Four-
ier bases) is positive and swap the sign of those with a negative constant term.
At a first glance, the U-shaped pattern recognised in the market volatility curves
(Fig. 4.2) is still present, meaning that the mean curves alone are not sufficient
to capture the whole underlying motion. This is especially true for the S&P500
index. The loading coefficients dij are represented by the heatmap in Fig. 4.5,
where darker colours denote larger magnitudes. The picture for the S&P500
(left panel) looks quite uniform, although some vertical shades can be identi-
fied, corresponding to brief periods of market turbulence also visible in Fig. 4.1
(cf. e.g. the rightmost part of the left panel). Note however that Fig. 4.1 portrays
high-frequency 5-minute returns, while each pixel of the heatmap in Fig. 4.5
corresponds to one trading day, implying that days exhibiting an outstanding
peak in the returns series need not be necessarily more volatile all in all. The
picture for the EURONEXT 100 (right panel) instead contains some horizontal
structure, suggesting that, after the mean is taken into account, there are se-
curities that are systematically more volatile (darker rows) than others (paler
rows), at least for certain prolonged periods. The most visible example of this is
given by the reddish segment in the north-east corner, denoting an asset (Altice,
a Netherlands-based multinational telecoms company) that consistently experi-
ences a substantially higher volatility for about a month in a row.

We proceed by further reducing the (still) high-dimensional collection of ei-
genfunction in Fig. 4.4 in order to grasp their main underlying dynamics. We
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Figure 4.6.: Mean function µ(t) obtained by estimating the market volatility
model; S&P500 (left) and EURONEXT 100 (right).

thus proceed with the second step of our procedure, namely another functional
principal component decomposition, according to eq. (4.2.19). In this way we
are able to identify a single eigenfunction ψ(t) summarising the principal mode
of variation of the I previous eigenfunctions. The principal eigenfunction ψ(t),
represented as the thick line in Fig. 4.4, captures in a single curve what the mean
functions µi(t) do not. Again, the usual U-shaped motif is present. Given the
lower number of constituents (93 vs. 502) of the EURONEXT 100 index (right
panel), their picture looks more noisy than for the S&P500 (left panel). It remains
true, however, that in both markets the lowest trough falls around halfway in the
trading day and the two highest crests happen in the vicinity of market opening
and market closing.

4.3.2. Market volatility

The market volatility decomposition in eq. (4.2.14) pinpoints a single couple
of curves, namely the mean function µ(t) and the eigenfunction φ(t), together
with a vector of loading coefficients aj of the latter, from the collection of intra-
day volatility curves already shown in Fig. 4.2. As expected, the mean function,
shown in Fig. 4.6, shares the U-shaped dynamics of the market volatility traject-
ories in Fig. 4.2. The noticeable spike on the right branch of the EURONEXT 100
curve (right panel) is most likely related to the American market’s morning
opening. The principal eigenfunction φ(t), pictured in Fig. 4.7, shares with the
mean function the fact of displaying its lowest point halfway throughout the
trading day, but exhibits less of a ‘U’ shape. Given the lower dimensionality
of the market volatility model, it is feasible to visualise the predicted volatil-
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Figure 4.7.: Eigenfunction φ(t) obtained by estimating the market volatility

model; S&P500 (left) and EURONEXT 100 (right).
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Figure 4.8.: Predicted market volatility trajectories V̂ j(t) by the market volatility
model; S&P500 (left) and EURONEXT 100 (right).

99



4. A 2-step functional principal component analysis of intra-day volatility trajectories

Jun Jul Aug Sep Oct Nov Dec

−
3

−
2

−
1

0
1

2

days

lo
ad

in
g 

co
ef

fi
ci

en
t

Figure 4.9.: Market volatility loading coefficients aj; S&P500 (blue) and
EURONEXT 100 (green).

ity trajectories in a single picture, reported in Fig. 4.8. Following eq. (4.2.14)
the predicted V̂ j(t)’s appear as parallel displacements of the eigenfunction φ(t),
whose magnitude for each day j is given by the corresponding loading coeffi-
cient aj, summed to the mean function µ(t) reported in Fig. 4.6. Higher (respect-
ively, lower) curves represent trajectories with a larger (smaller) overall intra-
day volatility. For the S&P500 (left panel) one curve visibly outlies the bundle
from below, corresponding to a day (specifically, 6th June 2017) of exceptionally
low volatility at the market index level. Conversely, the EURONEXT 100 picture
(right panel) displays an outlier above the stack, coinciding with a day of excep-
tionally high volatility (specifically, 1st December 2017). Such extreme values
are better appreciable in Fig. 4.9, reporting the series of (dated) loading coeffi-
cients aj for the two indices. This picture also reveals some interesting insights
about the evolution of market volatility over both time and space. For instance,
it is clear that for the EURONEXT 100 (green bars) there exist prolonged periods
in which the coefficients are either greater than zero (e.g. from mid-July to early
August) and hence displaying a consistently higher than average volatility, or
less than zero (e.g. from mid-September to mid-October), in which volatility is
consistently below average. This pattern reflects the well known volatility clus-
tering property of financial markets, in which the signs of future returns are
not readily predictable although their magnitudes are, and tend to cluster in
time, giving rise to prolonged periods of low volatility followed by periods of
high volatility (see e.g. Andersen and Bollerslev, 1997; Mandelbrot, 1963). To
a lesser extent, i.e. for less consecutive days, this is also true for the S&P500
(e.g. between late June and early July). This shouldn’t come as a surprise since
the American stock market is generally regarded as being relatively more liquid
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Figure 4.10.: Mean functions µi(t) obtained by estimating the idiosyncratic
volatility model; S&P500 (left) and EURONEXT 100 (right).

than its European counterpart. Fig. 4.9 also allows a preliminary international
comparison of the two financial markets. Specifically, there are periods in which
the loading coefficients for the two indices share the same sign and periods in
which they don’t. In the first, the American and European stock markets act as
complements, while in the second they act as substitutes for volatility.

4.3.3. Idiosyncratic volatility

The second part of our extended model only exploits information that concerns
the idiosyncratic component of returns, i.e. after the market return is filtered
out of each constituent of the index, following eq. (4.2.8). We estimate a func-
tional principal component decomposition, analogous to the one carried out in
the baseline model (see Section 4.3.1), on the idiosyncratic volatility measures
V∗ij (t) defined in eq. (4.2.10). Following eq. (4.2.15) we obtain the mean func-
tions µ∗i (t) and eigenfunctions φ∗i (t), one for each of the constituents i of the
index, and their loading coefficients bij, one for every asset i and for every trad-
ing day j. The mean functions, pictured in Fig. 4.10 still retain the U-shaped
signature for both indices. The S&P500 (left panel) displays an outlier stand-
ing above the remaining, relatively uniform, bundle of curves (corresponding
to Newmont Mining Corporation, an American gold mining company). The
EURONEXT 100 (right panel) presents a more dispersed structure, similar to
Fig. 4.3. The range of the eigenfunctions, pictured as thin lines in Fig. 4.11, has
expectedly shrunk with respect to the baseline counterpart (cf. Fig. 4.4) since a
sizeable part of the overall volatility, namely the market volatility captured by
the CAPM betas of eq. (4.2.2), has been excluded. Differently from the eigen-
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Figure 4.11.: Eigenfunctions φ∗i (t) obtained by estimating the idiosyncratic
volatility model and their principal eigenfunction ψ∗(t) (thick
curve); S&P500 (left) and EURONEXT 100 (right).
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Figure 4.12.: Heatmap of the loading coefficients bij within the idiosyncratic
volatility model; S&P500 (left) and EURONEXT 100 (right). Darker
shades denote larger magnitudes.

functions of the baseline model in Fig. 4.4, the U-shaped pattern is much less
visible to the naked eye and a few outliers stand out, suggesting that a handful
of constituents display a markedly different dynamics with respect to majority.
The loading coefficients bij are represented by the heatmap in Fig. 4.12. As ex-
pected, most of the vertical structure present in Fig. 4.5 and capturing variation
across assets has vanished. Although the heatmap looks visually closer to ran-
dom noise for both indices, not all of the common variation has disappeared.
The second step of our procedure, involving the functional principal compon-
ent decomposition of the idiosyncratic eigenfunctions φ∗i (t), aims specifically at
eliciting this residual common part of idiosyncratic volatility trajectories. Pro-
ceeding along the same lines of the baseline model, we obtain a single principal
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eigenfunction ψ∗(t) representing the common idiosyncratic volatility of the con-
stituents of the indices. Represented as the thick line in Fig. 4.11, it still retains a
good deal of the U-shaped motion that is present at the market level, in the sense
that in both markets the lowest trough falls around halfway in the trading day
and the two highest crests happen in the vicinity of market opening and closing.
This also implies that the linear CAPM residuals of eq. (4.2.2) display some cor-
relation with the regressor. In spite of being the result of a 2-step procedure that,
by construction, throws a lot of information away at every step, we show in the
next section that the CIV curve ψ∗(t) retains a very valuable extent of informa-
tion about the individual volatility trajectories Vij(t) which can be successfully
exploited for the sake of their prediction.

4.4. Relative performance of the di�erent models

Each of the models discussed in sections 4.3.1 to 4.3.3 aims at reducing the di-
mensionality of an originally large dataset comprising multiple daily volatility
trajectories (as in the market volatility model), possibly for each of the constitu-
ents of a market index (as in the baseline and the idiosyncratic volatility mod-
els). In doing so, it singles out a much smaller set of curves, consisting of mean
functions and eigenfunctions, that attempt to incorporate most of the inform-
ation contained in the original trajectories. To test the relative performance of
the various models, we set up a number of linear regressions whose dependent
variable consist of the original volatility trajectories of single constituents of the
market index, and the regressors are given by a combination of the underlying
mean functions and eigenfunctions, added in an incremental fashion. We estim-
ate each regression for every constituent asset i and for every available trading
day j. From each experiment we obtain i× j adjusted R2 coefficients, i.e. totalling
68,774 for the S&P500 and 13,206 for the EURONEXT 100, of which we compute
averages across days and compare the resulting empirical distribution.

For the baseline model (see Section 4.3.1) we estimate the following linear
regression experiments:

Vij(t) = ν0ij + ν1ij · µi(t) + εij(t) (4.4.1)

Vij(t) = ν0ij + ν1ij · µi(t) + ν2ij · φi(t) + εij(t) (4.4.2)

Vij(t) = ν0ij + ν1ij · µi(t) + ν2ij · ψ(t) + εij(t) (4.4.3)

The first experiment in eq. (4.4.1) only includes the assets’ mean functions µi(t);
in the second and third regressions we add either the principal eigenfunctions
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Figure 4.13.: Prediction performance of the baseline model; S&P500 (left) and
EURONEXT 100 (right).

φi(t) (eq. (4.4.2)) or their common principal eigenfunction ψ(t) (eq. (4.4.3)).
Fig. 4.13 reports the boxplot of the adjusted R2

i coefficients in each of the regres-
sion experiments (underlying regressors are specified on the horizontal axis). It
is clear that, while the mean functions alone constitute good predictors of the
original volatility trajectories, explaining on average about 37.00% of the overall
variance in the S&P500 and 36.59% in the EURONEXT 100 (these and subsequent
numerical figures about adjusted R2 coefficients are rounded up to their fourth
decimal digit), adding the principal eigenfunctions φi(t) to the equation gives
an edge in terms of performance, increasing the explained variance to, respect-
ively, about 43.73% and 43.85%. This is not surprising since, by construction,
the infinite series of eigenfunctions (of which by assumption we include only
the first) capture the residual part of information that is not embedded into the
mean function. The second fact discernible from Fig. 4.13 is that including the
single principal eigenfunction ψ(t) in place of the I eigenfunctions φi(t) does not
make the prediction considerably better or worse (the average adjusted R2 coef-
ficient is 0.4423 for the S&P500 and 0.4392 for the EURONEXT 100). This means
that a single curve, the second-order principal eigenfunction ψ(t), captures vir-
tually all the information carried by the multiple φ’s. It also appears that the
lower dimensional eq. (4.4.3) scores slightly better than its higher-dimensional
counterpart (eq. (4.4.2)).

Regarding our extended model, we first evaluate the performance of each
of its branches, namely the market volatility and idiosyncratic volatility mod-
els, and then we test their explanatory power in conjunction. For the lower-
dimensional market volatility model (see Section 4.3.2) we fit the following two
regressions

Vij(t) = ν0ij + ν1ij · µ(t) + εij(t) (4.4.4)

Vij(t) = ν0ij + ν1ij · µ(t) + ν2ij · φ(t) + εij(t) (4.4.5)

The first experiment in eq. (4.4.4) only includes the market’s mean function µ(t),
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Figure 4.14.: Prediction performance of the market volatility model; S&P500
(left) and EURONEXT 100 (right).
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Figure 4.15.: Prediction performance of the idiosyncratic volatility model;
S&P500 (left) and EURONEXT 100 (right).

while the second experiment in eq. (4.4.5) also includes the principal eigenfunc-
tion φ(t). The boxplots in Fig. 4.13, as expected, suggest that including both
curves into the equation gives a better prediction, explaining about 29.15% of
the individual volatility trajectories for the S&P500 (left panel) and 31.74% for
the EURONEXT 100 (right panel), as opposed to, respectively, 19.44% and 25.30%
for the model that exploits the mean function alone. Note that in these exper-
iments we are only using aggregate information about the index to predict the
volatility curves of its constituents and that a lower R2 coefficient is therefore to
be expected with respect to the baseline model.

The linear regressions that we use to test the idiosyncratic volatility model
(see Section 4.3.1) are the ‘starred’ analogous of those used for the baseline
model (cf. eqs. (4.4.1) to (4.4.3)):

Vij(t) = ν0ij + ν1ij · µ∗i (t) + εij(t) (4.4.6)

Vij(t) = ν0ij + ν1ij · µ∗i (t) + ν2ij · φ∗i (t) + εij(t) (4.4.7)

Vij(t) = ν0ij + ν1ij · µ∗i (t) + ν2ij · ψ∗(t) + εij(t) (4.4.8)

The usual boxplots, reported in Fig. 4.15,suggest a very similar picture to the
baseline ones in Fig. 4.13, both qualitatively and quantitatively. The interpret-
ation is identical, so we just report the relevant numerical figures: from left to
right, the average adjusted R2 coefficients read 0.3667, 0.4250 and 0.4273 for the
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Figure 4.16.: Prediction performance of the whole extended model; S&P500 (left)
and EURONEXT 100 (right).

S&P500 (left panel), and 0.3617, 0.4214 and 0.4225 for theEURONEXT 100 (right
panel).

We receive a twofold message from Figs. 4.13 to 4.15. First, that in all three
instances there is a good deal of information about the original volatility traject-
ories that is not captured by their mean functions and that including even only
the first-order eigenfunctions sensibly increases the performance of the predic-
tions. Second, with respect to Figs. 4.13 and 4.15, that the information contained
in the I first-order eigenfunctions can be captured, essentially in its entirety, by a
single curve, thereby enabling to further reduce the dimensionality of the prob-
lem at virtually no loss.

As a last step, we merge together the market and the idiosyncratic volatility
models and estimate the following regression featuring the functional curves
obtained therein in a bottom up fashion:

Vij(t) = ν0ij + ν1ij · µ(t) + ν2ij · µ∗i (t) + εij(t) (4.4.9)

Vij(t) = ν0ij + ν1ij · µ(t) + ν2ij · µ∗i (t) + ν3ij · φ(t) + εij(t) (4.4.10)

Vij(t) = ν0ij + ν1ij · µ(t) + ν2ij · µ∗i (t) + ν3ij · φ(t) + ν4ij · ψ∗(t) + εij(t) (4.4.11)

Fig. 4.15 reports the corresponding boxplots. The linear model in eq. (4.4.9),
including the market mean function µ(t) and the I idiosyncratic mean func-
tions µ∗i (t), explains 43.58% of total variation in the S&P500 and 45.08% in the
EURONEXT 100 (right panel). These figures are greater than their counterparts in
the two separate market and idiosyncratic volatility models, meaning that both
curves are useful in conjunction to predict the volatility trajectories for each asset
i. On top of that, eq. (4.4.10) includes the market principal eigenfunction φ(t)
and scores a better performance of respectively 49.49% and 51.06% explained
variance at the cost of adding a single curve. Finally, eq. (4.4.11) assesses the
performance of the whole extended model by adding the second-order prin-
cipal eigenfunction ψ∗(t). The explained variance, 56.34% for the S&P500 and
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Figure 4.17.: Empirical cumulative density of the adjusted R2 coefficients distri-
bution of regressions in eq. (4.4.11) (navy) and of analogous regres-
sions featuring φ∗i (t) in place of ψ∗(t) (green); S&P500 (left) and
EURONEXT 100 (right).

57.38% for the EURONEXT 100 is the highest of all the tested models and displays
a substantial advantage with respect to the baseline model in spite of exploiting
the very same initial information.7

For the sake of completeness, we also estimate the following linear model
featuring the I principal eigenfunctions φ∗i (t) in place of the single second-order
principal eigenfunction ψ∗(t):

Vij(t) = ν0ij + ν1ij · µ(t) + ν2ij · µ∗i (t) + ν3ij · φ(t) + ν4ij · φ∗i (t) + εij(t) (4.4.12)

Fig. 4.17 compares the empirical CDF of the adjusted R2 distribution from
eq. (4.4.11) (blue) with that of eq. (4.4.12) (green). The distributions average read,
respectively, 0.5513 for the S&P500 (left panel) and 0.5659 for the EURONEXT 100
(right panel). Somewhat counter-intuitively, it appears that the performance of
the lower dimensional regression featuring the CIV eigenfunction ψ∗(t) first-
order stochastically dominates, in both markets, that of the extended model with
the individual eigenfunctions φ∗i (t).

4.5. Concluding remarks

We investigate the intra-day volatility trajectories of the single constituents
of two major international financial markets, namely the S&P500 and the
EURONEXT 100 indices. The incumbent literature has so far been addressing
one security (or market index) at a time. We therefore extend the theoretical

7Strictly speaking, our extended model exploits more information with respect to the baseline
since its market volatility branch is based on actual data regarding the market index. How-
ever, in a separate experiment which we don’t report here, we constructed the market volat-
ility series M∆

jt using the first five principal components of the cross section of returns as
done in Herskovic et al. (2016) obtaining substantially analogous results.
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framework and develop the necessary methodology, based on recent advances
in the functional data analysis field, in order to study an arbitrarily large col-
lection of assets in a joint fashion. We devise a 2-step dimension-reduction pro-
cedure based on functional principal component analysis that aims at singling
out a small set of curves, consisting of mean functions and eigenfunctions, that
attempt to incorporate most of the information contained in the original large
database of individual intra-day trajectories. We find that the loss of information
linked to the consecutive application of principal component analysis is neg-
ligible and that our multi-asset upgrade substantially improves the prediction
performance of the single-asset model. On top of this, we propose an alternative
model based on a CAPM-inspired distinction between market volatility, i.e. the
volatility of the index or of the underlying market portfolio, and the residual,
asset-specific idiosyncratic volatility. We find that this extended model outper-
forms the original model in predicting the individual volatility trajectories, and
that the contribution of the common idiosyncratic volatility curve, i.e. the curve
that synthesise the principal mode of variation among all idiosyncratic volatil-
ities, is not negligible thereof. In all our instances, we also find that the mean
function alone is not an optimal predictor and that adding the first functional
principal component to the equation, even discarding higher orders, brings a
substantial improvement.

We believe that our framework could be fruitfully extended in a number of
directions. First, the second step of our 2-step procedure only tackles the di-
mension reduction of a set of eigenfunctions, one for every underlying asset,
to a single curve, while we make no attempt to likewise reduce the collection
of mean functions resulting from the first step. Expanding our procedure to
include such a reduction for the means would enable the prediction of an arbit-
rarily large set of original trajectories using a constant number of curves, at a
cost in terms of prediction performance which is worth investigating. Second,
in our study we neglect the possibility of serial dependence in the repeated ob-
servations of intra-day volatility trajectories. As recognised by Hörmann and
Kokoszka (2010), while (weak) dependence does not prevent, in performing the
functional principal component analysis, the consistent estimation of the eigen-
decomposition of a covariance operator, it fails to take into account the poten-
tially very valuable information that is carried by the past values of the func-
tional observations under study. State-of-the-art techniques such as dynamic
functional principal component analysis (see e.g. Hörmann et al., 2014), based
on a frequency domain approach, specifically target time series exhibiting some
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serial dependence structure. Upgrading our 2-step procedure along these lines
is not straightforward, although it would likely improve the prediction perform-
ance of our volatility model.
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Appendix



A
Mathematical proofs

A.1. Proof of Proposition 2.1

Recall, first of all, that a null dividend yield is ruled out by our phase space, and
therefore the trivial fixed point (0,0) is not applicable. By lagging and substitut-
ing the first equation into the second, it is easy to further reduce system (2.3.1)
to a 1-dimensional map f̃ C : R++→R++ solely in terms of the dividend yield:

et = f̃ C(et−1) = et−1
1− x

1 + x(et−1 − 1)
(1 + g). (A.1.1)

Map (A.1.1) admits a unique non-trivial fixed point

e∗ = g
1− x

x
. (A.1.2)

Substituting e∗ into the first equation of system (2.3.1) yields the equilibrium
return r∗ = g. It is also possible to show that:

� map f C̃(·) is strictly increasing over R++ since

( f C̃)′(·) = (x− 1)2

[1 + x(et−1 − 1)]2
(1 + g) > 0; (A.1.3)

� the slope of f C̃ at the fixed point lies within the unit circle since

( f C̃)′(e∗) =
1

1 + g
∈ (0,1). (A.1.4)

Therefore, fixed point C̃ =
(

g , g 1−x
x

)
is the unique, globally stable fixed point

of the system.
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A.2. Proof of Proposition 2.2

Recall, first of all, that a null dividend yield is ruled out by our phase space,
and therefore the trivial (deterministic) fixed point (0,0) is not applicable. We
shall show that the 1-dimensional map (2.3.10) admits a unique globally stable
random fixed point. In fact, defining

eu = g
1− xu

xu and ed = g
1− xd

xd , (A.2.1)

as in (2.3.9), it holds

eu = f S̃du(e
d) = f S̃uu(e

u), (A.2.2)

ed = f S̃ud(e
u) = f S̃dd(e

d). (A.2.3)

Therefore, the state eS̃(x−1, x) = g
1− x−1

x−1
is a random fixed point of map

(2.3.10). To show uniqueness and stability we shall use the following proper-
ties:

� for every couple (xt−2, xt−1) ∈
�

2{xu, xd} map f S̃xt−2,xt−1
is both strictly

increasing,

( f S̃xt−2,xt−1
)′(·) = xt−2(xt−2 − 1)(xt−1 − 1)

xt−1 [1 + xt−2(et−1 − 1)]2
(1 + g) > 0, (A.2.4)

and concave over R++,

( f S̃xt−2,xt−1
)′′(·) = −2(xt−2)

2(1− xt−2)(1− xt−1)

xt−1 [1 + xt−2(et−1 − 1)]3
(1 + g) < 0. (A.2.5)

� for every couple (xt−2, xt−1) ∈
�

2{xu, xd}

( f S̃xt−2,xt−1
)′(·)

∣∣∣
e=ext−2

=
1

1 + g
∈ (0,1) , (A.2.6)

where ext−2 = eu when xt−2 = xu and ext−2 = ed when xt−2 = xd .

Uniqueness Given monotonicity and concavity, there exists only one ē such
that fuu(ē) = ē. It follows that the random fixed point is unique.
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Global stability For every t and for every realisation of the Markov process
{xt} the composition of maps

f S̃xt−2,xt−1
◦ · · · ◦ f S̃x0,x1

(A.2.7)

is monotone and concave because it is the composition of monotone and con-
cave maps. Moreover, due to (A.2.2), (A.2.3), and (A.2.6)

( f S̃xt−2,xt−1
◦ . . . ◦ f S̃x0,x1

)′
∣∣∣
e=ex0

=

(
1

1 + g

)t
. (A.2.8)

It follows that for all initial dividend yields in the open interval (0, ed) the dy-
namics converges to eS̃ from below, whereas for all initial dividend yields in the
open interval (ed,∞), the dynamics converges to eS̃ from above. Note that the
convergence does not depend on P.

Having proved global stability of eS̃ for map f̃ S in (2.3.10), global stability
of S̃ for map F̃S in (2.3.5) follows from the implications of the dividend yield
dynamics on the dynamics of returns in the first equation of system (2.3.5).

A.3. Proof of Proposition 2.3

Fixed points C and S are straightforward generalisations of fixed points C̃ and
S̃ derived in Proposition 2.1 and Proposition 2.2 when border conditions ϕ∗ = 0
and ϕ∗ = 1 are, respectively, imposed. It suffices to show that there exists no
fixed point other than the aforementioned. Hence, consider the case ϕ∗ ∈ (0,1):
the first equation of system (2.2.15) reduces to

x−1 = ϕ∗x−1 + (1− ϕ∗)x. (A.3.1)

Under Assumption 2.2 this condition is never satisfied since xd , xu. Therefore
there exist no fixed points other than those found above.
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A.4. Proof of Lemma 2.1

Consider first the Jacobian matrix J C of system (2.2.15) computed at fixed point
C

J C =



∂ϕ

∂ϕ−1

∣∣∣∣∣
C

∂ϕ

∂r−1

∣∣∣∣∣
C

∂ϕ

∂e−1

∣∣∣∣∣
C

∂r
∂ϕ−1

∣∣∣∣∣
C

∂r
∂r−1

∣∣∣∣∣
C

∂r
∂e−1

∣∣∣∣∣
C

∂e
∂ϕ−1

∣∣∣∣∣
C

∂e
∂r−1

∣∣∣∣∣
C

∂e
∂e−1

∣∣∣∣∣
C


=



x + gx−1

x(1 + g)
0 0

x(x− x−1)− g(x− x)
x2(1− x)

− g
1 + g

x
1− x

0 − g
1 + g

· 1− x
x

1


.

(A.4.1)

The matrix is stochastic since it depends on two consecutive realisations x−1

and x of the stochastic trader’s portfolio position. Moreover, it displays the
following structure:

J C =

♣ 0

r ♠

 , (A.4.2)

where

♣ =

[
∂ϕ

∂ϕ−1

∣∣∣∣∣
C

]
, 0=

[
0 0

]
, r=


∂r

∂ϕ−1

∣∣∣∣∣
C

0

 , ♠ =


∂r

∂r−1

∣∣∣∣∣
C

∂r
∂e−1

∣∣∣∣∣
C

∂e
∂r−1

∣∣∣∣∣
C

∂e
∂e−1

∣∣∣∣∣
C


(A.4.3)

Null block 0 prevents the r block from having any long-lasting effect on fixed
point stability. Under Assumption 2.1, the rate of growth of paid dividends is
strictly positive and the deterministic eigenvalues associated with the ♠ block
are always non-negative and less than unity:

λ♠1 =
1

1 + g
< 1 if and only if g > 0, (A.4.4)

λ♠2 = 0 < 1. (A.4.5)

Since stochastic block ♣ of Jacobian matrix (A.4.1) is 1× 1 its eigenvalue equals
the ♣ element itself. The latter equals the ratio of the growth rate of wealth
of the two groups, after a given realisation (x−1, x). Local asymptotic stabil-
ity follows by applying the same argument used in Theorem 4.3 Bottazzi and
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Dindo (2014) that exploits Oseledets’ multiplicative ergodic theorem and the
local Hartman–Grobman theorem (Coayla-Teran and Ruffino, 2004, cf. Theorem
2.1 and 3.2, respectively). In particular, a sufficient condition for local stability
can be given in terms of the geometric expected value of ♣ according to the
invariant distribution π̃ of the Markov process {x−1, x}, as derived in Corol-
lary 2.1. From the definition of ρi

∣∣
j, the following equality holds:

Eπ̃G [♣] = Eπ̃G

[
∂ϕ

∂ϕ−1

∣∣∣∣∣
C

]
=

ρS
∣∣
C

ρC
∣∣
C

. (A.4.6)

Fixed point C is asymptotically stable when Eπ̃G [♣] < 1 and unstable when
Eπ̃G [♣] > 1. The latter inequalities can be therefore characterised in terms of
the relative value of ρS

∣∣
C

and ρC
∣∣
C
.

An analogous argument is applicable to the Jacobian matrix J S of system
(2.2.15) computed at fixed point S. The latter appears structurally similar to J C.
We don’t report its complete derivation for the sake of brevity.

A.5. Proof of Proposition 2.4

Following Lemma 2.1, a sufficient condition for local stability can be given in
terms of the geometric expected value of ♣ in Jacobian J C according to the
invariant distribution π̃ of the Markov process {x−1, x}, as derived in Corol-
lary 2.1:

Eπ̃G [♣] =
ρS
∣∣
C

ρC
∣∣
C

=

(
x + gxu

) πu

πu+πd
(

x + gxd
) πd

πu+πd

x(1 + g)
. (A.5.1)

Inequality (2.4.3) guarantees that the Eπ̃G [♣] lies inside the unit circle. Instability
follows along the same lines.
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A.6. Proof of Proposition 2.5

Due to the strict concavity of the logarithm function, for the growth rate ρS
∣∣
C

it
holds

log

(1 + g
xu

x

) πu

πu+πd
(

1 + g
xd

x

) πd

πu+πd

 < log

[
1 +

g
x

(
πu

πu + πd · x
u +

πd

πu + πd · x
d

)]

= log
[

1 + g
E[xt]

x

]
. (A.6.1)

It follows that if x ≥ E[xt] then ρS
∣∣
C
< ρC

∣∣
C
.

A.7. Proof of Proposition 2.6

ρS
∣∣
C
(·) is a continuous and strictly decreasing function of x on the open interval

(0,1) as it holds

∂

∂x
ρS
∣∣
C
(·) = − g

∑
i∈{u,d},j∈{u,d},i,j

πixi(x + gxi)
πi

πi+π j (x + gxj)
πi+2π j

πi+π j

x2(πu + πd)(x + gxu)(x + gxd)
< 0. (A.7.1)

Moreover, its limiting behaviour at the extrema of the support is characterised
by

lim
x→0+

ρS
∣∣
C
(·) = +∞, (A.7.2)

lim
x→1−

ρS
∣∣
C
(·) = Eπ̃G [1 + gx−1] < 1 + g. (A.7.3)

Applying the intermediate value theorem yields the desired result.

xd < x′

If x = xd, then condition (2.4.3) is violated since[
xd + gxu

xd + gxd

] πu

πu+πd

> 1. (A.7.4)

Since by Proposition 2.6 ρS
∣∣
C
(·) is monotone decreasing in x, it must be

that x′ > xd.
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x′ < xu

If x = xu, then LHS of eq. (2.4.3) reads

[
xu + gxd

xu + gxu

] πd

πu+πd

< 1. (A.7.5)

Since by Proposition 2.6 ρS
∣∣
C
(·) is monotone decreasing in x, by continuity

∃ ε > 0 such that ρS
∣∣
C
(xu − ε) < 1 + g. Therefore, it must be that x′ < xu.

Moreover, due to Proposition 2.5 it holds that x′ < E[xt].

A.8. Proof of Proposition 2.7

Following Lemma 2.1, a sufficient condition for local stability can be given in
terms of the geometric expected value of ♣ in Jacobian J S according to the
invariant distribution π̃ of the Markov process {x−1, x}, as derived in Corol-
lary 2.1:

Eπ̃G [♣] =
ρC
∣∣
S

ρS
∣∣
S

=

[
1 +

gx
xu

] πu(1−πd)
πu+πd

·
[

1 + g
x
xu +

(xu − x)(xu − xd)

xu(1− xu)

] πuπd

πu+πd

·
[

1 + g
x
xd +

(x− xd)(xu − xd)

xd(1− xd)

] πuπd

πu+πd

·
[

1 +
gx
xd

] πd(1−πu)
πu+πd

· (1 + g)−1.

(A.8.1)

Inequality (2.4.3) guarantees that the Eπ̃G [♣] lies inside the unit circle. Instability
follows along the same lines.

A.9. Proof of Proposition 2.8

Start by decomposing eq. (2.4.6) in its multiplicative components. Let us define
ρC

ij

∣∣
S

as the value of ρC
∣∣
S

when x−1 = xi and x = xj, with xi, xj ∈ {xu, xd}. Note
that we can safely get rid of the probability exponent since it plays no role in the
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current analysis. It is straightforward to check that

ρC

uu
∣∣
S
Q 1 + g ⇐⇒ x Q xu, (A.9.1)

ρC

ud

∣∣
S
= 1 + g ⇐⇒ x = xu ∨ g = g̃ :=

xu − xd

1− xu , (A.9.2)

ρC

ud

∣∣
S
≶ 1 + g ⇐⇒

(
x ≶ xu ∧ g ≷ g̃

)
∨

(
x ≷ xu ∧ g ≶ g̃

)
,

(A.9.3)

ρC

du

∣∣
S
Q 1 + g ⇐⇒ x Q xd, (A.9.4)

ρC

dd

∣∣
S
Q 1 + g ⇐⇒ x Q xd, (A.9.5)

Condition (2.4.7) and follows from the joint satisfaction of eqs. (A.9.1)
and (A.9.3) to (A.9.5) with strict inequality signs ‘<’.

Moreover, it is possible to show that ρC

ud

∣∣
S
· ρC

du

∣∣
S
> 1 + g, ∀g > 0 that is, in-

dependently of the threshold g̃ (note that ρC

ud

∣∣
S

and ρC

du

∣∣
S

are powered by the
same exponent in eq. (2.4.6), as per the invariant distribution π̃ in eq. (2.3.14)).
As a consequence, the sufficient condition (2.4.8) for the joint satisfaction of
eqs. (A.9.1) and (A.9.3) to (A.9.5) with strict inequality signs ‘>’ only requires
x ≥ xu.

A.10. Hint of Conjecture 2.1

ρC
∣∣
S
(·) is a continuous and differentiable function of x over the open interval

(0,1). At the extrema of the support it holds

lim
x→0+

ρC
∣∣
S
(·) = 1 < 1 + g, (A.10.1)

lim
x→1−

ρC
∣∣
S
(·) = Eπ̃G

[
1 +

g
x−1

]
> 1 + g. (A.10.2)

Moreover, it is possible to numerically show that ρC
∣∣
S
(·) exhibit no inflec-

tion points over x ∈ (0,1). We look for the roots of ∂2

∂x2 ρC
∣∣
S
(·) = 0 us-

ing the Anderson-Björck method ∀xu, xd,πu,πd ∈ {0.01,0.02, . . . ,0.99} such that
xu > xd, ∀g ∈ 10k,k ∈ {−4,−3, . . . ,+1}. We then check that none of them belong
to the interval (0,1), finding no exceptions. Applying the intermediate value
theorem yields the desired result.
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A.11. Proof of Proposition 2.9

Start by decomposing eq. (2.4.6) in its multiplicative components. Let us define
ρC

ij

∣∣
S

as the value of ρC
∣∣
S

when x−1 = xi and x = xj, with xi, xj ∈ {xu, xd}. It is
straightforward to check that if x = xd then ρC

du

∣∣
S
(xd) = ρC

dd

∣∣
S
(xd) = 1 + g and

ρC
∣∣
S

reduces to

ρC
∣∣
S
(xd) = ρC

uu
∣∣
S
(xd)

πu(1−πd)
πu+πd · ρC

ud

∣∣
S
(xd)

πuπd

πu+πd · (1 + g)
πuπd

πu+πd +
πd(1−πu)

πu+πd . (A.11.1)

From Proposition 2.8 it follows that

ρC

uu
∣∣
S
(xd) < 1 + g, (A.11.2)

ρC

ud

∣∣
S
(xd) R 1 + g ⇐⇒ g Q

xu − xd

1− xu . (A.11.3)

Moreover,

lim
g→0+

ρC

uu
∣∣
S
(xd) = 1, (A.11.4)

lim
g→0+

ρC

ud

∣∣
S
(xd) =

xu + xd(2xu − xd)

xu(1− xu)
> 1. (A.11.5)

Therefore, there exists a ĝ > 0 such that ∀ g < ĝ condition (2.4.6) is strictly vi-
olated, i.e. ρC

∣∣
S
(xd) > 1 + g and it must be that x′′ < xd. Finally, from Proposi-

tion 2.6 it holds that xd < x′.

A.12. Hint of Conjecture 2.2

The unique solution x′ of ρS
∣∣
C
(x) = 1 + g is computed using the Anderson-

Björck method and then the condition ρC
∣∣
S
(x′) > 1 + g is tested ∀xu, xd,πu,πd ∈

{0.01,0.02, . . . ,0.99} such that xu > xd, and ∀g = ĝ · 10k, k ∈ N+ under the re-
striction g ≤ 10. No exception is found.
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Hörmann, Siegfried, Łukasz Kidziński and Marc Hallin (2014). ‘Dynamic func-
tional principal components’. Journal of the Royal Statistical Society, Statistical
Methodology Series B 77(2), pp. 319–348. DOI: 10.1111/rssb.12076.

Hörmann, Siegfried and Piotr Kokoszka (2010). ‘Weakly dependent functional
data’. Annals of Statistics 38(3), pp. 1845–1884. DOI: 10.1214/09-aos768.

Hull, J.H. (2017). Options, Futures, and Other Derivatives. 9th ed. Pearson.

Jacob Leal, Sandrine, Mauro Napoletano, Andrea Roventini and Giorgio Fagi-
olo (2016). ‘Rock around the clock: An agent-based model of low- and high-

129

https://doi.org/10.1214/12-aoas551
https://doi.org/10.1016/j.jmateco.2004.09.001
https://doi.org/10.1016/j.jfineco.2015.09.010
https://doi.org/10.1016/j.jfineco.2015.09.010
https://doi.org/10.1111/0022-1082.00379
https://doi.org/10.1016/s1386-4181(00)00014-8
https://doi.org/10.1111/1540-6261.00556
https://doi.org/10.1111/1540-6261.00556
https://doi.org/10.1086/466891
https://doi.org/10.1016/S1574-0021(05)02023-X
https://doi.org/10.1016/S1574-0021(05)02023-X
https://doi.org/10.1111/rssb.12076
https://doi.org/10.1214/09-aos768


References

frequency trading’. Journal of Evolutionary Economics 26(1), pp. 49–76. DOI: 10.
1007/s00191-015-0418-4.

Jain, Prem C. and Gun Ho Joh (1988). ‘The Dependence between Hourly Prices
and Trading Volume’. Journal of Financial and Quantitative Analysis 23(3),
pp. 269–283. DOI: 10.2307/2331067.

Jensen, Michael C. (1978). ‘Some anomalous evidence regarding market effi-
ciency’. Journal of Financial Economics 6(2–3), pp. 95–101. DOI: 10.1016/0304-
405x(78)90025-9.

Kahneman, Daniel (2003). ‘Maps of bounded rationality: psychology for beha-
vioral economics’. American Economic Review 93(5), pp. 1449–1475. DOI: 10.
1257/000282803322655392.

Kahneman, Daniel and Amos Tversky (1979). ‘Prospect Theory: An Analysis of
Decision under Risk’. Econometrica 47(2), pp. 263–292. DOI: 10.2307/1914185.

Keynes, John M. (1936). The General Theory of Unemployment, Interest and Money.
Harcourt, Brace and World, New York.

Kirman, Alan P. (1992). ‘Whom or What Does the Representative Individual
Represent?’ Journal of Economic Perspectives 6(2), pp. 117–136. DOI: 10.1257/
jep.6.2.117.

Kirman, Alan P. (2011). Complex Economics: Individual and Collective Rationality.
Routledge.

Kirman, Alan P. and Gilles Teyssière (2002). ‘Microeconomic Models for Long
Memory in the Volatility of Financial Time Series’. Studies in Nonlinear Dynam-
ics & Econometrics 5(4), pp. 281–302. DOI: doi.org/10.2202/1558-3708.1083.

Kluger, Brian D. and Mark E. McBride (2011). ‘Intraday trading patterns in an in-
telligent autonomous agent-based stock market’. Journal of Economic Behavior
& Organization 79(3), pp. 226–245. DOI: 10.1016/j.jebo.2011.01.032.

Kokoszka, Piotr, Hong Miao and Xi Zhang (2014). ‘Functional Dynamic Factor
Model for Intraday Price Curves’. Journal of Financial Econometrics 13(2),
pp. 456–477. DOI: 10.1093/jjfinec/nbu004.

Kon, Stanley J. (1984). ‘Models of Stock Returns—A Comparison’. Journal of Fin-
ance 39(1), pp. 147–165. DOI: 10.1111/j.1540-6261.1984.tb03865.x.

130

https://doi.org/10.1007/s00191-015-0418-4
https://doi.org/10.1007/s00191-015-0418-4
https://doi.org/10.2307/2331067
https://doi.org/10.1016/0304-405x(78)90025-9
https://doi.org/10.1016/0304-405x(78)90025-9
https://doi.org/10.1257/000282803322655392
https://doi.org/10.1257/000282803322655392
https://doi.org/10.2307/1914185
https://doi.org/10.1257/jep.6.2.117
https://doi.org/10.1257/jep.6.2.117
https://doi.org/doi.org/10.2202/1558-3708.1083
https://doi.org/10.1016/j.jebo.2011.01.032
https://doi.org/10.1093/jjfinec/nbu004
https://doi.org/10.1111/j.1540-6261.1984.tb03865.x


References

Lakonishok, Josef and Seymour Smidt (1988). ‘Are Seasonal Anomalies Real?
A Ninety-Year Perspective’. Review of Financial Studies 1(4), pp. 403–425. DOI:
10.1093/rfs/1.4.403.

LeBaron, Blake (2006). ‘Agent-based Computational Finance’. In: Handbook of
Computational Economics, volume 2. Ed. by Leigh Tesfatsion and Kenneth L.
Judd. North-Holland. DOI: 10.1016/S1574-0021(05)02024-1.

Levy, Moshe, Haim Levy and Sorin Solomon (1994). ‘A microscopic model of the
stock market: Cycles, booms, and crashes’. Economics Letters 45(1), pp. 103–
111. DOI: 10.1016/0165-1765(94)90065-5.

Lo, Andrew W. (2004). ‘The Adaptive Markets Hypothesis: Market efficiency
from an evolutionary perspective.’ Journal of Portfolio Management 30(5),
pp. 15–29. DOI: 10.3905/jpm.2004.442611.

Lo, Andrew W. and A. Craig MacKinley (2002). A Non-Random Walk Down Wall
Street. Princeton University Press.

Lo, Andrew W., Dmitry V. Repin and Brett N. Steenbarger (2005). ‘Fear and
Greed in Financial Markets: A Clinical Study of Day-Traders’. American Eco-
nomic Review 95(2), pp. 352–359. DOI: 10.1257/000282805774670095.

Lockwood, Larry J. and Scott C. Linn (1990). ‘An Examination of Stock Mar-
ket Return Volatility During Overnight and Intraday’. Journal of Finance 45(2),
pp. 591–601. DOI: 10.1111/j.1540-6261.1990.tb03705.x.

Lux, Thomas (1995). ‘Herd Behaviour, Bubbles and Crashes’. Economic Journal
105(431), pp. 881–896. DOI: 10.2307/2235156.

Lux, Thomas (1998). ‘The socio-economic dynamics of speculative markets: in-
teracting agents, chaos, and the fat tails of return distributions’. Journal of
Economic Behavior & Organization 33(2), pp. 143–165. DOI: 10.1016/S0167-
2681(97)00088-7.

Lux, Thomas and Michele Marchesi (2000). ‘Volatility clustering in fin-
ancial markets: a microsimulation of interacting agents’. International
Journal of Theoretical and Applied Finance 3(4), pp. 675–702. DOI: 10 . 1142 /
S0219024900000826.

Malkiel, Burton G. (2003). ‘The Efficient Market Hypothesis and Its Crit-
ics’. Journal of Economic Perspectives 17(1), pp. 59–82. DOI: 10 . 1257 /

089533003321164958.

131

https://doi.org/10.1093/rfs/1.4.403
https://doi.org/10.1016/S1574-0021(05)02024-1
https://doi.org/10.1016/0165-1765(94)90065-5
https://doi.org/10.3905/jpm.2004.442611
https://doi.org/10.1257/000282805774670095
https://doi.org/10.1111/j.1540-6261.1990.tb03705.x
https://doi.org/10.2307/2235156
https://doi.org/10.1016/S0167-2681(97)00088-7
https://doi.org/10.1016/S0167-2681(97)00088-7
https://doi.org/10.1142/S0219024900000826
https://doi.org/10.1142/S0219024900000826
https://doi.org/10.1257/089533003321164958
https://doi.org/10.1257/089533003321164958


References

Malkiel, Burton G. (2016). A Random Walk down Wall Street: The Time-tested
Strategy for Successful Investing. 11th ed. W. W. Norton & Company.

Mandelbrot, Benoit B. (1963). ‘The Variation of Certain Speculative Prices’.
Journal of Business 36(4), pp. 394–419. DOI: 10.1086/294632.

Mandelbrot, Benoit B. (1971). ‘When Can Price be Arbitraged Efficiently? A
Limit to the Validity of the Random Walk and Martingale Models’. Review
of Economics and Statistics 53(3), pp. 225–236. DOI: 10.2307/1937966.

Markowitz, Harry (1952). ‘Portfolio Selection’. Journal of Finance 7(1), pp. 77–91.
DOI: 10.1111/j.1540-6261.1952.tb01525.x.

McInish, T. H. and R. A. Wood (1991). ‘Hourly returns, volume, trade size, and
number of trades’. Journal of Financial Research 14(4), pp. 303–315. DOI: 10.
1111/j.1475-6803.1991.tb00668.x.

McWilliams, James D. (1966). ‘Prices, Earnings and P-E Ratios’. Financial Ana-
lysts Journal 22(3), pp. 137–142. DOI: 10.2469/faj.v22.n3.137.

Menkhoff, Lukas (2010). ‘The use of technical analysis by fund managers: In-
ternational evidence’. Journal of Banking & Finance 34(11), pp. 2573–2586. DOI:
10.1016/j.jbankfin.2010.04.014.

Miller, John H. and Scott E. Page (2007). Complex Adaptive Systems: An Introduc-
tion to Computational Models of Social Life. Princeton University Press.

Müller, Hans-Georg, Rituparna Sen and Ulrich Stadtmüller (2011). ‘Functional
data analysis for volatility’. Journal of Econometrics 165(2), pp. 233–245. DOI:
10.1016/j.jeconom.2011.08.002.

Mulvey, John M. and Woo Chang Kim (2010). ‘Fixed Mix Strategy’. In: En-
cyclopedia of Quantitative Finance. Ed. by Rama Cont. Wiley. DOI: 10.1002/
9780470061602.eqf14010.

Nelson, Richard R. and Sydney G. Winter (1982). An Evolutionary Theory of Eco-
nomic Change. Belknap Press.

Nicholson, S. Francis (1968). ‘Price Ratios in Relation to Investment Results’.
Financial Analysts Journal 24(1), pp. 105–109. DOI: 10.2469/faj.v24.n1.105.

Palczewski, Jan, Klaus Reiner Schenk-Hoppé and Tongya Wang (2016). ‘Itchy
feet vs cool heads: Flow of funds in an agent-based financial market’. Journal

132

https://doi.org/10.1086/294632
https://doi.org/10.2307/1937966
https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
https://doi.org/10.1111/j.1475-6803.1991.tb00668.x
https://doi.org/10.1111/j.1475-6803.1991.tb00668.x
https://doi.org/10.2469/faj.v22.n3.137
https://doi.org/10.1016/j.jbankfin.2010.04.014
https://doi.org/10.1016/j.jeconom.2011.08.002
https://doi.org/10.1002/9780470061602.eqf14010
https://doi.org/10.1002/9780470061602.eqf14010
https://doi.org/10.2469/faj.v24.n1.105


References

of Economic Dynamics and Control 63, pp. 53–68. DOI: 10.1016/j.jedc.2015.
12.002.

Pellizzari, Paolo and Frank Westerhoff (2009). ‘Some effects of transaction taxes
under different microstructures’. Journal of Economic Behavior & Organization
72(3), pp. 850–863. DOI: 10.1016/j.jebo.2009.08.010.

Raberto, Marco, Enrico Scalas and Francesco Mainardi (2002). ‘Waiting-times
and returns in high-frequency financial data: an empirical study’. Physica A:
Statistical Mechanics and its Applications 314(1-4), pp. 749–755. DOI: 10.1016/
S0378-4371(02)01048-8.

Ramsay, James, Giles Hooker and Spencer Graves (2009). Functional Data Ana-
lysis with R and MATLAB. Springer. DOI: 10.1007/978-0-387-98185-7.

Ramsay, James and B. W. Silverman (2005). Functional Data Analysis. 2nd ed.
Springer. DOI: 10.1016/b978-0-08-097086-8.42046-5.

Renò, Roberto (2008). ‘Nonparametric estimation of the diffusion coefficient of
stochastic volatility models’. Econometric Theory 24(5), pp. 1174–1206. DOI: 10.
1017/s026646660808047x.

Rosser, J. Barkley (1999). ‘On the Complexities of Complex Economic Dynam-
ics’. Journal of Economic Perspectives 13(4), pp. 169–192. DOI: 10.1257/jep.13.
4.169.

Samuelson, Paul A. (1965). ‘Proof that properly anticipated prices fluctuate ran-
domly’. Industrial management review 6(2), pp. 41–49.

Sandroni, Alvaro (2000). ‘Do Markets Favor Agents able to Make Accurate Pre-
dictions?’ Econometrica 68(6), pp. 1303–1341. DOI: 10.1111/1468-0262.00163.

SEC (2014). Equity Market Structure Literature Review. Part II: High Frequency
Trading. White Paper. March 18, 2014. URL: https : / / www . sec . gov /

marketstructure/research/hft_lit_review_march_2014.pdf.

Shiller, Rober J. (2016). Irrational Exuberance. 3rd ed. Princeton University Press.

Shiller, Robert J. (1981). ‘Do Stock Prices Move Too Much to be Justified by Sub-
sequent Changes in Dividends?’ American Economic Review 71(3), pp. 421–436.
DOI: 10.3386/w0456.

Simon, Herbert A. (1956). ‘Rational choice and the structure of the environment.’
Psychological Review 63(2), pp. 129–138. DOI: 10.1037/h0042769.

133

https://doi.org/10.1016/j.jedc.2015.12.002
https://doi.org/10.1016/j.jedc.2015.12.002
https://doi.org/10.1016/j.jebo.2009.08.010
https://doi.org/10.1016/S0378-4371(02)01048-8
https://doi.org/10.1016/S0378-4371(02)01048-8
https://doi.org/10.1007/978-0-387-98185-7
https://doi.org/10.1016/b978-0-08-097086-8.42046-5
https://doi.org/10.1017/s026646660808047x
https://doi.org/10.1017/s026646660808047x
https://doi.org/10.1257/jep.13.4.169
https://doi.org/10.1257/jep.13.4.169
https://doi.org/10.1111/1468-0262.00163
https://www.sec.gov/marketstructure/research/hft_lit_review_march_2014.pdf
https://www.sec.gov/marketstructure/research/hft_lit_review_march_2014.pdf
https://doi.org/10.3386/w0456
https://doi.org/10.1037/h0042769


References

Simon, Herbert A. (1979). ‘Rational Decision Making in Business Organizations’.
American Economic Review 69(4), pp. 493–513.

Simon, Herbert A. (1997). Administrative behavior: A Study of Decision Making Pro-
cesses in Administrative Organizations. 4th ed. The Free Press.

Tauchen, George E. and Mark Pitts (1983). ‘The Price Variability-Volume Rela-
tionship on Speculative Markets’. Econometrica 51(2), pp. 485–505. DOI: 10.
2307/1912002.

Taylor, Mark P. and Helen Allen (1992). ‘The use of technical analysis in the
foreign exchange market’. Journal of International Money and Finance 11(3),
pp. 304–314. DOI: 10.1016/0261-5606(92)90048-3.

Thaler, Richard H. (1987). ‘Anomalies: Weekend, Holiday, Turn of the Month,
and Intraday Effects’. Journal of Economic Perspectives 1(2), pp. 169–177. DOI:
10.1257/jep.1.2.169.

Timmermann, Allan and Clive W. J. Granger (2004). ‘Efficient market hypothesis
and forecasting’. International Journal of Forecasting 20(1), pp. 15–27. DOI: 10.
1016/s0169-2070(03)00012-8.

134

https://doi.org/10.2307/1912002
https://doi.org/10.2307/1912002
https://doi.org/10.1016/0261-5606(92)90048-3
https://doi.org/10.1257/jep.1.2.169
https://doi.org/10.1016/s0169-2070(03)00012-8
https://doi.org/10.1016/s0169-2070(03)00012-8



	Abstract
	Acknowledgement
	Contents
	List of Figures
	List of Tables
	Introduction
	Asset prices and wealth dynamics in a financial market with random demand shocks
	Introduction
	The model
	Trader behaviour

	Representative trader economies
	The economy with a constant trader: no pass-through
	The economy with a stochastic trader: maximal pass-through

	Heterogeneous traders economy
	Sufficient conditions for no endogenous pass-through
	Sufficient conditions for maximal pass-through
	Sufficient conditions for endogenous pass-through

	Simulations and sensitivity analysis
	Endogenous pass-through
	Sensitivity analysis

	Concluding remarks

	An agent-based model of intra-day financial markets dynamics
	Introduction
	Stylised facts
	Time-invariant stylised facts of financial markets
	Intra-daily stylised facts of financial markets

	The model
	Timing and market setting
	Traders' participation
	Traders' behaviour

	Numerical simulations
	Noise traders only
	Fundamentalists and chartists
	Endogenous activation
	Sensitivity analysis

	Concluding remarks

	A 2-step functional principal component analysis of intra-day volatility trajectories
	Introduction
	Model
	A diffusion model with drift for repeated volatility trajectories
	Functional data analysis
	Functional principal component analysis of volatility curves

	Data and empirical application
	Baseline model
	Market volatility
	Idiosyncratic volatility

	Relative performance of the different models
	Concluding remarks

	Appendix
	Mathematical proofs
	Proof of Proposition 2.1
	Proof of Proposition 2.2
	Proof of Proposition 2.3
	Proof of Lemma 2.1
	Proof of Proposition 2.4
	Proof of Proposition 2.5
	Proof of Proposition 2.6
	Proof of Proposition 2.7
	Proof of Proposition 2.8
	Hint of Conjecture 2.1
	Proof of Proposition 2.9
	Hint of Conjecture 2.2

	References

