Labour-saving automation: a direct measure of occupational exposure

Fabio Montobbio^{a b}

Jacopo Staccioli^{a c}

M. Enrica Virgillito^{c a}

Marco Vivarelli^{a c}

^aDepartment of Economic Policy, Università Cattolica del Sacro Cuore, Milano ^bBRICK, Collegio Carlo Alberto, Torino ^cInstitute of Economics, Scuola Superiore Sant'Anna, Pisa

Outline

- **1** Context and motivation
- Data and methodology
- **3** Occupational exposure
- **4** Discussion

Context

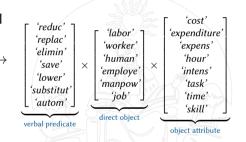
the impact of automation upon employment has become a major topic of discussion both in policy and academic debate

Brynjolfsson and McAfee (2011, 2014) the root of current unemployment is not the Great Recession, but rather a 'Great Restructuring' characterised by an exponential growth in computers' processing power having an ever-bigger impact on jobs, skills, and the whole economy ("This time is different")

Frey and Osborne (2017) 47% of the occupational categories are at high risk of being automated, including services and highly cognitive jobs

Acemoglu and Autor (2011) technology destroys occupation in the middle part of the wage distribution substituting repetitive and routinised tasks

Motivation


- a few proxies have been used to measure the impact of technology on the labour market
 - share of computers in sectors of belonging (Autor, Levy, Murnane, 2003)
 - share of robots in sectors of belonging (Acemoglu and Restrepo, 2020)
 - automation probability constructed via Delphi method (experts judgment) and classifier systems (Arntz et al., 2016; Frey and Osborne, 2017; Nedelkoska and Quintini, 2018)
- these are all *indirect* measures which might confound firm and industry attributes and heterogeneous technological artefacts
- a more *direct* machine-task mapping is still missing with few
- we construct a direct measure of occupational exposure to labour-saving technologies
- RQ how many jobs are at risk of being replaced by automation?
- RQ which occupations are the most exposed?

Our starting point

Montobbio et al. (2022)¹ identify labour-saving patents among USPTO robotic applications (2009–2018)

- robotics patents identified by a mix of technological classification codes (CPC) and keyword search
- 2 labour-saving patents identified by text query and manual validation (no false positives)
- 1,276 *truly* labour-saving patents

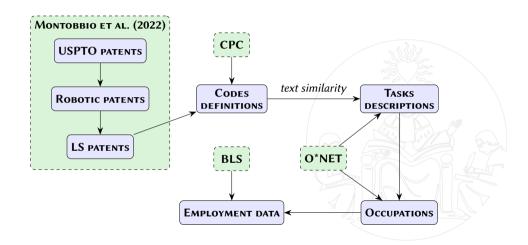
¹Montobbio, F., J. Staccioli, M. E. Virgillito, and M. Vivarelli (2022) "Robots and the origin of their labour-saving impact". *Technological Forecasting and Social Change* 174, 121122. DOI: 10.1016/j.techfore.2021.121122

Examples of labour-saving patents

"Automated systems, such as robotic systems, are used in a variety of industries to **reduce labor costs and/or increase productivity**. Additionally, the use of human operators can involve increased cost relative to automated systems."

[US20170178485A1]

"The use of [robotic] technology results in improved management of information, services, and data, increased efficiency, significant reduction of time, **decreased manpower requirements**, and substantial cost savings." [US20100223134A1]


Outline

- Context and motivation
- Data and methodology
- **3** Occupational exposure
- 4 Discussion

Flowchart

Occupations and labour-saving patents

we compute a text similarity measure between technological codes and tasks

CPC corpus

- technological definitions from CPC v. 2019.08
- 671 4-digit CPC codes

Task-Occupation corpus

- tasks description from O*NET v. 25.1
- 19,231 tasks mapped to 923 8-digit SOC2018 occupations

preprocessing: every piece of text is tokenised, stemmed, and stop words are removed

Document-term matrix

- **1** construct the *document-term matrix* \mathcal{D}_{CPC} of the corpus *D* of CPC definitions
 - each cell contains the frequency of term *t* in definition *d*
 - tf-idf: term frequency-inverse document frequency

$$\begin{aligned} \mathsf{tf\text{-}idf}(t,d,D) &:= \mathsf{tf}(t,d) \cdot \mathsf{idf}(t,D) \\ \mathsf{tf}(t,d) &:= \mathbf{1}_d(t) = \begin{cases} 1 & \text{if } t \in d \\ 0 & \text{otherwise} \end{cases} \\ \mathsf{idf}(t,D) &:= \log \left(\frac{|D|}{|\{d \in D : t \in d\}|} \right) \end{aligned}$$

■ 671 × 2309 matrix

Cosine similarity

- **2** construct the *document-term matrix* $\mathcal{D}_{\textit{ONET}}$ of the corpus of task descriptions
 - lacktriangle projected on the *vocabulary* of the CPC matrix \mathcal{D}_{CPC}
 - 19231 × 2309 matrix
- 3 construct the cosine similarity (CS) measure between the two corpora
 - for each couple of row vectors $X \in \mathcal{D}_{CPC}, Y \in \mathcal{D}_{ONET}$ $(X, Y \in \mathbb{R}^{2309}_+)$

$$cos(X, Y) := \frac{X \cdot Y}{\|X\| \|Y\|} = \frac{\sum_{t} x_{t} y_{t}}{\sqrt{\sum_{t} x_{t}^{2}} \sqrt{\sum_{t} y_{t}^{2}}}$$

- $\cos(X, Y) \in [0, 1]$ since vectors X and Y are non-negative valued
- w.r.t. Euclidean distance, cosine similarity normalises for varying lengths of documents
- 671 × 19231 cosine similarity matrix²
- each task obtains a similarity score to each CPC code (12,904,001 pairs)

Cosine similarity (cont'd)

CPC code A23F

"COFFEE; TEA; THEIR SUBSTITUTES; MANUFACTURE, PREPARATION, OR INFUSION THEREOF (coffee or tea pots A47G19/14; tea infusers A47G19/16; apparatus for making beverages, e.g. coffee or tea, A47J31/00; coffee mills A47J42/00)"

O*NET task 2209

"Prepare and serve a variety of beverages such as coffee, tea, and soft drinks"

 $\cos pprox 0.81$

O*NET task 10209

"Set up and operate machines, such as lathes, cutters, shears, borers, **millers**, grinders, presses, drills, or auxiliary machines, to make metallic and plastic workpieces" $\cos \approx 0.01$

Cosine similarity (cont'd)

Occupation	11-	11-1011.00				53-7121.00	
CPC TASK	8823	8824				12809	12810
A01B A01D	cos(A01B,8823)	cos(A01B,8824) cos(A01D,8824)				cos(A01B, 12809) cos(A01D, 12809)	cos(A01B, 12810) cos(A01D, 12810)
Н05Н Н05К	cos(H05H,8823)	cos(H05H,8824) cos(H05K,8824)				cos(H05H, 12809) cos(H05K, 12809)	cos(H05H,12810) cos(H05K,12810)

- 4 weigh by CPC frequency in LS patents³
- 5 sum across CPCs, and rescale between [0,1]

³codes B25*, G01*, G05*, G06*, and Y* are excluded because too general

From tasks to occupations

- each O*NET occupation consists of a number of *core* and *supplementary* tasks
- we attribute task CS to occupations with weights

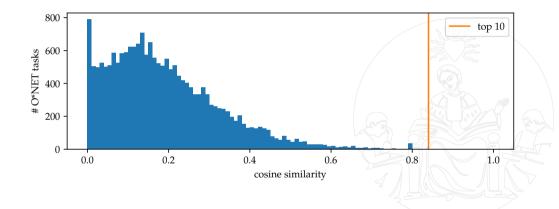
core:
$$\frac{2/3}{\text{# tasks in the occupation}}$$

supplementary:
$$\frac{1/3}{\# \text{ tasks in the occupation}}$$

■ this weighting scheme reflects O*NET cutoff between core and supplementary tasks (based on a blend of *frequency*, *importance*, and *relevance* to underlying occupation)

Outline

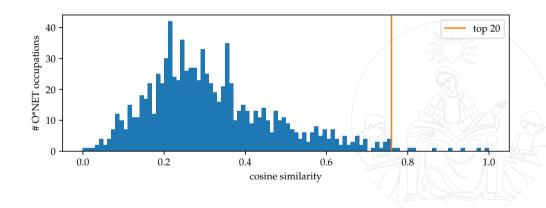
- **■** Context and motivation
- 2 Data and methodology
- **3** Occupational exposure



Top tasks by similarity

#	Code	Description	cs
1	14587	Load materials and products into machines and equipment, or onto conveyors, using hand tools and moving devices	1.0
2	3202	Move levers or controls that operate lifting devices, such as forklifts, lift beams with swivel-hooks, hoists, or elevating platforms, to load, unload, transport, or stack material	0.96
3	3203	Position lifting devices under, over, or around loaded pallets, skids, or boxes and secure material or products for transport to designated areas	0.9
4	17928	Lift and move loads, using cranes, hoists, and rigging, to install or repair hydroelectric system equipment or infrastructure	0.89
5	15266	Manually or mechanically load or unload materials from pallets, skids, platforms, cars, lifting devices, or other transport vehicles	0.88
6	14584	Remove materials and products from machines and equipment, and place them in boxes, trucks or conveyors, using hand tools and moving devices	0.86
7	11839	Transport machine parts, tools, equipment, and other material between work areas and storage, using cranes, hoists, or dollies	0.85
8	3217	Load materials and products into package processing equipment	0.85
9	12805	Operate conveyors and equipment to transfer grain or other materials from transportation vehicles	0.85
10	12323	Communicate with systems operators to regulate and coordinate line voltages and transmission loads and frequencies	0.84

Tasks by similarity

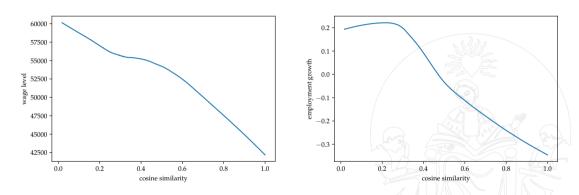


Top occupations by similarity

#	Code	Title	CS
1	53-7051.00	Industrial Truck and Tractor Operators	1.0
2	49-9043.00	Maintenance Workers, Machinery	0.97
3	53-7063.00	Machine Feeders and Offbearers	0.94
4	53-7064.00	Packers and Packagers, Hand	0.91
5	49-2091.00	Avionics Technicians	0.87
6	51-9111.00	Packaging and Filling Machine Operators and Tenders	0.81
7	49-3041.00	Farm Equipment Mechanics and Service Technicians	0.81
8	49-3092.00	Recreational Vehicle Service Technicians	0.78
9	49-3042.00	Mobile Heavy Equipment Mechanics, Except Engines	0.77
10	47-2111.00	Electricians	0.76
11	49-9098.00	Helpers-Installation, Maintenance, and Repair Workers	0.75
12	49-9041.00	Industrial Machinery Mechanics	0.75
13	51-9082.00	Medical Appliance Technicians	0.75
14	47-3011.00	Helpers-Brickmasons, Blockmasons, Stonemasons, and Tile and Marble Setters	0.75
15	51-9191.00	Adhesive Bonding Machine Operators and Tenders	0.75
16	51-9023.00	Mixing and Blending Machine Setters, Operators, and Tenders	0.74
17	13-1032.00	Insurance Appraisers, Auto Damage	0.73
18	51-4111.00	Tool and Die Makers	0.73
19	49-9081.00	Wind Turbine Service Technicians	0.72
20	51-8013.04	Hydroelectric Plant Technicians	0.72

Occupations by similarity

Occupational exposure and employment


- match with Occupational Employment Statistics (OES) from US Bureau of Labor Statistics
- employment (excluding self-employed) and median wage data for 6-digit SOC occupations

2019 for levels

1999 for 20-year growth rates

Wage levels and employment growth

• robust LOWESS estimates of the underlying scatter plots (bandwidth = 0.8)

Outline

- **1** Context and motivation
- Data and methodology
- **3** Occupational exposure
- **4** Discussion

Discussion

- the cosine similarity matrix is overall very *sparse*
 - skewed distributions in both tasks and occupations
 - high similarity is a **rare event** (low probability of false positives)
- considering the top decile of the similarity distribution, around 8.6% of employees (≈12.6m) are exposed to substitution
- we do not know how many workers a single machine is able to substitute

Discussion (cont'd)

- exposure to substitution is monotonically decreasing in wage
 - no U-shaped pattern but rather a negative declining relationship
- most affected occupations (2-digit) include "transportation and material moving" (logistics), "installation, maintenance, and repair" (automotive), "food preparation and serving"
- exposure to substitution is decreasing in employment growth
 - innovative efforts towards the weakest and cheapest segment of the labour market
- the most affected sector is manufacturing, but health and education services rank high
 - suggests pervasiveness of exposure to labour-saving technologies

▶ sectors

- geographic divide between US coasts and inland (Rust Belt and Southern states)
 - most exposed areas have higher prevalence of non-white communities

Thank you very much!

jacopo.staccioli@unicatt.it

paper and presentation available at www.staccioli.org

I Jacopo Staccioli gratefully acknowledges support by the PRIN project 201799ZJSN: "Technological change, industry evolution, and employment dynamics"

Patent-O*NET match: top tasks by similarity

#	Code	Description	cs
1	16596	Build or assemble robotic devices or systems	1.0
2	11944	Set up and operate computer-controlled machines or robots to perform one or more machine functions on metal or plastic workpieces	0.98
3	21057	Build, configure, or test robots or robotic applications	0.97
4	16523	Conduct research on robotic technology to create new robotic systems or system capabilities	0.93
5	16511	Provide technical support for robotic systems	0.91
6	16587	Assist engineers in the design, configuration, or application of robotic systems	0.86
7	16525	Conduct research into the feasibility, design, operation, or performance of robotic mechanisms, components, or systems, such as planetary rovers, multiple mobile robots, reconfigurable robots, or manmachine interactions	0.84
8	16593	Install, program, or repair programmable controllers, robot controllers, end-of-arm tools, or conveyors	0.81
9	16584	Modify computer-controlled robot movements	0.8
10	16579	Maintain service records of robotic equipment or automated production systems	0.8

Patent-O*NET match: top occupations by similarity

#	Code	Title	CS
1	17-2199.08	Robotics Engineers	1.0
2	17-3024.01	Robotics Technicians	0.96
3	47-2231.00	Solar Photovoltaic Installers	0.49
4	17-2072.01	Radio Frequency Identification Device Specialists	0.46
5	15-1299.08	Computer Systems Engineers/Architects	0.45
6	15-1299.02	Geographic Information Systems Technologists and Technicians	0.42
7	51-9161.00	Computer Numerically Controlled Tool Operators	0.41
8	17-2199.11	Solar Energy Systems Engineers	0.4
9	49-2091.00	Avionics Technicians	0.39
10	15-1243.01	Data Warehousing Specialists	0.38
11	17-1022.01	Geodetic Surveyors	0.38
12	15-1244.00	Network and Computer Systems Administrators	0.38
13	17-2061.00	Computer Hardware Engineers	0.37
14	15-1299.03	Document Management Specialists	0.37
15	15-1211.00	Computer Systems Analysts	0.36
16	51-4034.00	Lathe and Turning Machine Tool Setters, Operators, and Tenders, Metal and Plastic	0.36
17	17-2041.00	Chemical Engineers	0.36
18	49-9044.00	Millwrights	0.36
19	15-2051.02	Clinical Data Managers	0.36
20	17-3021.00	Aerospace Engineering and Operations Technologists and Technicians	0.35

Existing literature

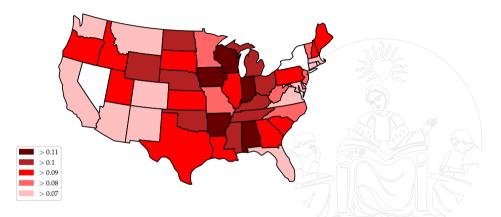
Webb (2020) proposes a direct measure of exposure via co-occurrence of verb-noun pairs in the title of AI patents and O*NET tasks

Felten et al. (2021) links the Electronic Frontier Foundation dataset with O*NET abilities

Acemoglu et al. (2020) look at Al exposed establishments (Webb, 2020, Felten et al., 2021) and their job posts using Burning Glass Technologies data

Meindl et al. (2021) match the patent text corpus with the O*NET detailed work activities

Kogan et al. (2021) constructs a text-similarity measure between a corpus of breakthrough
innovations (Kelly et al., 2018) and the Dictionary of Occupation Titles (DOT)


Sectoral exposure

Rank	NAICS 2-digit	CS	_
1	Manufacturing	1.0	_
2	Health care and social assistance	0.39	
3	Education services	0.33	
4	Construction	0.30	
5	Public administration	0.21	
16	Mining	0.06	
17	Finance and insurance	0.05	
18	Agriculture, forestry, fishing and hunting	0.04	
19	Real estate and rental and leasing	0.02	
20	Management of Companies and Enterprises	0.00	1

Weighted average of similarity and occupation membership to the underlying sector (O*NET)

Geographic exposure (continental US)

State-level disaggregation of the exposed occupations (top 10% of CS)

