Bubble-and-bust dynamics under walrasian asset pricing and heterogeneous traders

Giovanni Dosi†
Jacopo Staccioli†

†Scuola Superiore Sant’Anna, Pisa

First Bordeaux-Milano Joint Workshop on Agent-Based Macroeconomics

Bordeaux, 4th June, 2015
Outline

1 Context and proposal

2 Methodological perspective

3 The model

4 Simulation and results

5 Concluding remarks and conceivable extension
Outline

1 Context and proposal

2 Methodological perspective

3 The model

4 Simulation and results

5 Concluding remarks and conceivable extension
Outline

1 Context and proposal

2 Methodological perspective

3 The model

4 Simulation and results

5 Concluding remarks and conceivable extension
Outline

1. Context and proposal
2. Methodological perspective
3. The model
4. Simulation and results
5. Concluding remarks and conceivable extension
Financial bubbles

Source: NASDAQ OMX Group

Shaded areas indicate US recessions - 2014 research.stlouisfed.org
“if the reason that the price is high today is only because investors believe that the selling price will be high tomorrow – when ‘fundamental’ factors do not seem to justify such a price – then a bubble exists”

[Stiglitz, 1990]

“a sharp rise in the price of an asset or a range of assets in a continuous process, with the initial rise generating expectations of further rises and attracting new buyers – generally speculators interested in profits from trading in the asset rather than its use or earnings capacity”

[Kindleberger, 1978]
“if the reason that the price is high today is only because investors believe that
the selling price will be high tomorrow – when ‘fundamental’ factors do not
seem to justify such a price – then a bubble exists” [Stiglitz, 1990]

“a sharp rise in the price of an asset or a range of assets in a continuous
process, with the initial rise generating expectations of further rises and
attracting new buyers – generally speculators interested in profits from trading
in the asset rather than its use or earnings capacity” [Kindleberger, 1978]
Our proposal

We set up a model able to yield:

- *endogenous* bubble-and-bust dynamics
- as a result of the sole interaction among *heterogeneous adaptive traders*
- highlighting booms and crashes as intrinsic features of financial markets
Outline

1 Context and proposal

2 Methodological perspective

3 The model

4 Simulation and results

5 Concluding remarks and conceivable extension
Methodological perspective

Heterogeneous Agents Models
- analytical investigations of the dynamical systems representing the laws of motion of the economy
- analytical tractability often leads to simplifying assumptions
- focus on asymptotic properties

Agent-Based Models
- computational (numerical) study of economies modelled as evolving systems of interacting agents
- complex behaviour specifications
- keep track of the whole dynamics
Methodological perspective

Heterogeneous Agents Models

- analytical investigations of the dynamical systems representing the laws of motion of the economy
- analytical tractability often leads to simplifying assumptions
- focus on asymptotic properties

Agent-Based Models

- computational (numerical) study of economies modelled as evolving systems of interacting agents
- complex behaviour specifications
- keep track of the whole dynamics
1. Context and proposal

2. Methodological perspective

3. The model

4. Simulation and results

5. Concluding remarks and conceivable extension
The model

Consider a pure-exchange economy:

- N heterogeneous traders (index $\mathcal{N} = \{1, \ldots, n, \ldots, N\}$);
- L long-lived risky securities (index $\mathcal{L} = \{1, \ldots, \ell, \ldots, L\}$);
- a riskless bond;
- time is discrete (index $t \in \mathcal{T}$);
- risky securities, present in fixed amount, have ex-dividend price p^ℓ_t and pay random dividend d^ℓ_t at the end of each period;
- the bond, inelastically supplied, has price normalized to 1 (numéraire) and yields $r_f > 0$ in every t;
- trader wealth $W_{n,t}$ equals the market value of the portfolio he holds;
- fundamentals are proxied by the dividend yield $e^\ell_t = \frac{d^\ell_t}{p^\ell_{t-1}}$, $\forall \ell \in \mathcal{L}$.
Consider a pure-exchange economy:

- N heterogeneous traders (index $\mathcal{N} = \{1, \ldots, n, \ldots, N\}$);
- L long-lived risky securities (index $\mathcal{L} = \{1, \ldots, \ell, \ldots, L\}$);
- a riskless bond;
- time is discrete (index $t \in \mathcal{T}$);
- risky securities, present in fixed amount, have ex-dividend price p^ℓ_t and pay random dividend d^ℓ_t at the end of each period;
- the bond, inelastically supplied, has price normalized to 1 (numéraire) and yields $r_f > 0$ in every t;
- trader wealth $W_{n,t}$ equals the market value of the portfolio he holds;
- fundamentals are proxied by the dividend yield $e^\ell_t = \frac{d^\ell_t}{p^\ell_{t-1}}, \forall \ell \in \mathcal{L}$.
Consider a pure-exchange economy:

- \(N \) heterogeneous traders (index \(N = \{1, \ldots, n, \ldots, N\} \));
- \(L \) long-lived risky securities (index \(L = \{1, \ldots, \ell, \ldots, L\} \));
- a riskless bond;
- time is discrete (index \(t \in T \));
- risky securities, present in fixed amount, have ex-dividend price \(p_t^\ell \) and pay random dividend \(d_t^\ell \) at the end of each period;
- the bond, inelastically supplied, has price normalized to 1 (numéraire) and yields \(r_f > 0 \) in every \(t \);
- trader wealth \(W_{n,t} \) equals the market value of the portfolio he holds;
- fundamentals are proxied by the dividend yield \(e_t^\ell = \frac{d_t^\ell}{p_{t-1}^\ell}, \forall \ell \in L \).
Consider a pure-exchange economy:

- \(N \) heterogeneous traders (index \(\mathcal{N} = \{1, \ldots, n, \ldots, N\} \));
- \(L \) long-lived risky securities (index \(\mathcal{L} = \{1, \ldots, \ell, \ldots, L\} \));
- a riskless bond;
- time is discrete (index \(t \in \mathcal{T} \));
- risky securities, present in fixed amount, have ex-dividend price \(p_t^\ell \) and pay random dividend \(d_t^\ell \) at the end of each period;
- the bond, inelastically supplied, has price normalized to 1 (numéraire) and yields \(r_f > 0 \) in every \(t \);
- trader wealth \(W_{n,t} \) equals the market value of the portfolio he holds;
- fundamentals are proxied by the dividend yield \(e_t^\ell = \frac{d_t^\ell}{p_{t-1}^\ell}, \forall \ell \in \mathcal{L} \).
The model

Consider a pure-exchange economy:

- N heterogeneous traders (index $\mathcal{N} = \{1, \ldots, n, \ldots, N\}$);
- L long-lived risky securities (index $\mathcal{L} = \{1, \ldots, \ell, \ldots, L\}$);
- a riskless bond;
- time is discrete (index $t \in \mathcal{T}$);
- risky securities, present in fixed amount, have ex-dividend price p_{t}^{ℓ} and pay random dividend d_{t}^{ℓ} at the end of each period;
- the bond, inelastically supplied, has price normalized to 1 (numéraire) and yields $r_{f} > 0$ in every t;
- trader wealth $W_{n,t}$ equals the market value of the portfolio he holds;
- fundamentals are proxied by the dividend yield $e_{t}^{\ell} = \frac{d_{t}^{\ell}}{p_{t-1}^{\ell}}, \forall \ell \in \mathcal{L}$.

G. Dosi, J. Staccioli
Bubble dynamics under walrasian asset pricing and heterogeneous traders 4th June, 2015 9 / 35
The model

Consider a pure-exchange economy:

- N heterogeneous traders (index $\mathcal{N} = \{1, \ldots, n, \ldots, N\}$);
- L long-lived risky securities (index $\mathcal{L} = \{1, \ldots, \ell, \ldots, L\}$);
- a riskless bond;
- time is discrete (index $t \in \mathcal{T}$);
- risky securities, present in fixed amount, have ex-dividend price p^ℓ_t and pay random dividend d^ℓ_t at the end of each period;
- the bond, inelastically supplied, has price normalized to 1 (numéraire) and yields $r_f > 0$ in every t;
- trader wealth $W_{n,t}$ equals the market value of the portfolio he holds;
- fundamentals are proxied by the dividend yield $e^\ell_t = \frac{d^\ell_t}{p^\ell_{t-1}}$, $\forall \ell \in \mathcal{L}$.

G. Dosi, J. Staccioli

Bubble dynamics under walrasian asset pricing and heterogeneous traders

4th June, 2015
The model

Consider a pure-exchange economy:

- N heterogeneous traders (index $\mathcal{N} = \{1, \ldots, n, \ldots, N\}$);
- L long-lived risky securities (index $\mathcal{L} = \{1, \ldots, \ell, \ldots, L\}$);
- a riskless bond;
- time is discrete (index $t \in \mathcal{T}$);
- risky securities, present in fixed amount, have ex-dividend price p^ℓ_t and pay random dividend d^ℓ_t at the end of each period;
- the bond, inelastically supplied, has price normalized to 1 (numéraire) and yields $r_f > 0$ in every t;
- trader wealth $W_{n,t}$ equals the market value of the portfolio he holds;
- fundamentals are proxied by the dividend yield $e^\ell_t = \frac{d^\ell_t}{p^\ell_{t-1}}$, $\forall \ell \in \mathcal{L}$.
Consider a pure-exchange economy:

- \(N \) heterogeneous traders (index \(\mathcal{N} = \{1, \ldots, n, \ldots, N\} \));
- \(L \) long-lived risky securities (index \(\mathcal{L} = \{1, \ldots, \ell, \ldots, L\} \));
- a riskless bond;
- time is discrete (index \(t \in \mathcal{T} \));
- risky securities, present in fixed amount, have ex-dividend price \(p_{t}^{\ell} \) and pay random dividend \(d_{t}^{\ell} \) at the end of each period;
- the bond, inelastically supplied, has price normalized to 1 (numéraire) and yields \(r_{f} > 0 \) in every \(t \);
- trader wealth \(W_{n,t} \) equals the market value of the portfolio he holds;
- fundamentals are proxied by the dividend yield \(e_{t}^{\ell} = \frac{d_{t}^{\ell}}{p_{t-1}^{\ell}}, \forall \ell \in \mathcal{L} \).
Trader behaviour

At the beginning of each time step, trader \(n \) invests a share \(x_{n,t}^\ell \) of his wealth in security \(\ell \); the decision is made according to the information set

\[
\mathcal{I}_t = \{ p_1^\tau, \ldots, p_L^\tau; d_1^\tau, \ldots, d_L^\tau \mid \tau < t \}
\]

that is common knowledge, and to trader-specific investment function

\[
f_n : \mathbb{R}^{\tau \times L} \rightarrow \mathbb{R}^L \quad \text{such that} \quad x_{n,t} = f_{n,t}(\mathcal{I}_t)
\]

that is independent on wealth, coherent with CRRA attitude.

At every time step, each trader faces an optimisation problem of the form:

\[
\max_{x_{n,t}} \mathbb{E} \left[\frac{W_{n,t}^{1-\gamma_n} - 1}{1 - \gamma_n} \right]
\]

s.t.

\[
W_{n,t} = W_{n,t-1} \cdot \left[x_{n,t-1}^0 \cdot (1 + r_f) + \sum_{\ell=1}^L x_{n,t-1}^\ell \cdot \left(\frac{p_{t}^\ell}{p_{t-1}^\ell} + e_t^\ell \right) \right]
\]

where \(\gamma_n > 0 \) denotes the risk-aversion coefficient.
Trader behaviour

At the beginning of each time step, trader n invests a share $x^\ell_{n,t}$ of his wealth in security ℓ; the decision is made according to the information set

$$\mathcal{I}_t = \{p^1_\tau, \ldots, p^L_\tau; d^1_\tau, \ldots, d^L_\tau \mid \tau < t\}$$

that is common knowledge, and to trader-specific investment function

$$f_n : \mathbb{R}^{\tau \times L} \rightarrow \mathbb{R}^L \text{ such that } x_{n,t} = f_{n,t}(\mathcal{I}_t)$$

that is independent on wealth, coherent with CRRA attitude.

At every time step, each trader faces an optimisation problem of the form:

$$\max_{x_{n,t}} \mathbb{E} \left[\frac{W_{n,t}^{1-\gamma_n} - 1}{1 - \gamma_n} \right]$$

s.t.

$$W_{n,t} = W_{n,t-1} \cdot \left[x^0_{n,t-1} \cdot (1 + r_f) + \sum_{\ell=1}^L x^\ell_{n,t-1} \cdot \left(\frac{p^\ell_t}{p^\ell_{t-1}} + e^\ell_t \right) \right]$$

where $\gamma_n > 0$ denotes the risk-aversion coefficient.
Trader behaviour

At the beginning of each time step, trader n invests a share $x_{n,t}^\ell$ of his wealth in security ℓ; the decision is made according to the information set

$$\mathcal{I}_t = \{p_1^\tau, \ldots, p_L^\tau; d_1^\tau, \ldots, d_L^\tau \mid \tau < t\}$$

that is common knowledge, and to trader-specific investment function

$$f_n : \mathbb{R}^{\tau \times L} \rightarrow \mathbb{R}^L \text{ such that } x_{n,t} = f_{n,t}(\mathcal{I}_t)$$

that is independent on wealth, coherent with CRRA attitude.

At every time step, each trader faces an optimisation problem of the form:

$$\max_{x_{n,t}} \mathbb{E} \left[\frac{W_{n,t}^{1-\gamma_n} - 1}{1 - \gamma_n} \right]$$

s.t.

$$W_{n,t} = W_{n,t-1} \cdot \left[x_{n,t-1}^0 \cdot (1 + r_f) + \sum_{\ell=1}^L x_{n,t-1}^\ell \cdot \left(\frac{p_{t}^\ell}{p_{t-1}^\ell} + e_t^\ell \right) \right]$$

where $\gamma_n > 0$ denotes the risk-aversion coefficient.
Trader expectations

We assume the trader forms expectations about future price returns and their (co)variances by means of EWMA predictors over the information set previously defined:

\[
\hat{\rho}_{n,t}^\ell = \lambda_n \cdot \sum_{\tau=0}^{\infty} (1 - \lambda_n)^\tau \cdot \rho_{t-\tau-1}^\ell
\]

\[
\hat{\sigma}_{\rho,n,t}^{\ell,h} = \lambda_n \cdot \sum_{\tau=0}^{\infty} (1 - \lambda_n)^\tau \cdot \left[\rho_{t-\tau-1}^\ell - \hat{\rho}_{n,t-\tau-1}^\ell \right] \cdot \left[\rho_{t-\tau-1}^h - \hat{\rho}_{n,t-\tau-1}^h \right]
\]

where \(\rho_t^\ell = \frac{p_t^\ell}{p_{t-1}^\ell} - 1 \) is the price return of security \(\ell \) between \(t - 1 \) and \(t \). The memory decay factor \(\lambda_n \in (0, 1) \) captures the way relative weights are distributed across more recent and older observations.
We adopt the same mean-variance approximation of the optimal investment function proposed in Chiarella and He (2001):

\[
x_{n,t} = \frac{1}{\gamma_n} \cdot C_{n,t}^{-1} \cdot \left[E_{n,t} - r_f \cdot 1 \right]
\]

where \(E_{n,t} \) and \(C_{n,t} \) are, respectively, the vector of expected total returns and the expected variance-covariance matrix and \(d_n \) is a behavioural parameter:

- \(d_n = 0 \) trader \(n \) is a fundamentalist
- \(d_n > 0 \) trader \(n \) is a trend-chaser
- \(d_n < 0 \) trader \(n \) is a trend-contrarian

Assumption

\(e^\ell_t \) is drawn at each time step from a \(L \)-dimensional known probability distribution with mean \(\bar{e} \) and covariance matrix \(\Sigma \).
We adopt the same mean-variance approximation of the optimal investment function proposed in Chiarella and He (2001):

\[
x_{n,t} = \frac{1}{\gamma_n} \cdot C_{n,t}^{-1} \cdot \left[E_{n,t} - r_f \cdot 1 \right]
\]

where \(E_{n,t}\) and \(C_{n,t}\) are, respectively, the vector of expected total returns and the expected variance-covariance matrix and \(d_n\) is a behavioural parameter:

- \(d_n = 0\) trader \(n\) is a fundamentalist
- \(d_n > 0\) trader \(n\) is a trend-chaser
- \(d_n < 0\) trader \(n\) is a trend-contrarian

Assumption

\(e^\ell_t\) is drawn at each time step from a \(L\)-dimensional known probability distribution with mean \(\bar{e}\) and covariance matrix \(\Sigma\).
We adopt the same mean-variance approximation of the optimal investment function proposed in Chiarella and He (2001):

\[
x_{n,t} = \frac{1}{\gamma_n} \cdot C_{n,t}^{-1} \cdot \left[E_{n,t} - r_f \cdot 1 \right]
\]

where \(E_{n,t} \) and \(C_{n,t} \) are, respectively, the vector of expected total returns and the expected variance-covariance matrix and \(d_n \) is a behavioural parameter:

- \(d_n = 0 \) trader \(n \) is a fundamentalist
- \(d_n > 0 \) trader \(n \) is a trend-chaser
- \(d_n < 0 \) trader \(n \) is a trend-contrarian

Assumption

\(e^\ell_t \) is drown at each time step from a \(L \)-dimensional known probability distribution with mean \(\bar{e} \) and covariance matrix \(\Sigma \).
Proposition

If short positions are not allowed, i.e.

\[x_{n,t}^{\ell} \in (0, 1) \quad \forall n \in \mathcal{N}, \forall \ell \in \mathcal{L}, \forall t \in \mathcal{T} \]

then prevailing prices exist, are unique and strictly positive. It holds:

\[
p_t^{\ell} = p_{t-1}^{\ell} \cdot \frac{x_t^{\ell}}{x_{t-1}^{\ell}} \cdot \frac{x_0^{\ell} \cdot (1 + r_f) + \sum_{\ell=1}^{L} x_{t-1}^{\ell} \cdot e_t^{\ell}}{x_t^{0}}
\]

Assumption

No trader can take short position in any asset, i.e. the image of traders’ investment functions is restricted such that

\[
f_n : \mathbb{R}^{\tau \times L} \rightarrow \text{Int} \left(\triangle^L \right)
\]
Proposition

If short positions are not allowed, i.e.

\[x^\ell_{n,t} \in (0, 1) \quad \forall n \in \mathcal{N}, \forall \ell \in \mathcal{L}, \forall t \in \mathcal{T} \]

then prevailing prices exist, are unique and strictly positive. It holds:

\[p^\ell_t = p^\ell_{t-1} \cdot \frac{x^\ell_t}{x^\ell_{t-1}} \cdot \frac{x^0_{t-1} \cdot (1 + r_f) + \sum_{\ell=1}^{L} x^\ell_{t-1} \cdot e^\ell_t}{x^0_t} \]

Assumption

No trader can take short position in any asset, i.e. the image of traders’ investment functions is restricted such that

\[f_n : \mathbb{R}^{\tau \times L} \longrightarrow \text{Int} (\triangle^L) \]
Market selection and survival patterns

Definition

Individual wealth shares:

\[\varphi_{n,t} = \frac{W_{n,t}}{\sum_{n=1}^{N} W_{n,t}} \]

- A trader \(n \) is said to ‘survive’ the economy if his long-run wealth-share is significantly different from 0, i.e. if \(\lim_{t \to \infty} \varphi_{n,t} > 0 \)

- A trader \(n \) is said to ‘dominate’ the economy if his long-run wealth-share is significantly close to 1, i.e. if \(\lim_{t \to \infty} \varphi_{n,t} = 1 \)

Following Anufriev et al. (2006), two types of equilibria are possible:

1. Single-survivor equilibria (most ‘aggressive’ trader)
2. Multiple-survivor equilibria (non-generic)
Market selection and survival patterns

Definition

Individual wealth shares:

\[\varphi_{n,t} = \frac{W_{n,t}}{\sum_{n=1}^{N} W_{n,t}} \]

- A trader \(n \) is said to ‘survive’ the economy if his long-run wealth-share is significantly different from 0, i.e. if \(\lim_{t \to \infty} \varphi_{n,t} > 0 \)
- A trader \(n \) is said to ‘dominate’ the economy if his long-run wealth-share is significantly close to 1, i.e. if \(\lim_{t \to \infty} \varphi_{n,t} = 1 \)

Following Anufriev et al. (2006), two types of equilibria are possible:

1. Single-survivor equilibria (most ‘aggressive’ trader)
2. Multiple-survivor equilibria (non-generic)
Outline

1. Context and proposal
2. Methodological perspective
3. The model
4. Simulation and results
5. Concluding remarks and conceivable extension
Simulation results - survival patterns

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial population size</td>
<td>$N = 200$</td>
</tr>
<tr>
<td>Number of risky assets</td>
<td>$L = 1$</td>
</tr>
<tr>
<td>Static population</td>
<td>true</td>
</tr>
<tr>
<td>Riskless rate of return</td>
<td>$r_f = 0.02$</td>
</tr>
<tr>
<td>γ distribution</td>
<td>$\gamma_n \sim U(1.0, 1000.0)$</td>
</tr>
<tr>
<td>λ distribution</td>
<td>$\lambda_n = 0.1, \forall n \in N$</td>
</tr>
<tr>
<td>d distribution</td>
<td>$d_n = 1.0, \forall n \in N$</td>
</tr>
<tr>
<td>Initial wealth endowment</td>
<td>$W_{n,0} = 50.0, \forall n \in N$</td>
</tr>
<tr>
<td>Yield mean</td>
<td>$\bar{e} = 0.04$</td>
</tr>
<tr>
<td>Yield variance</td>
<td>$\sigma_e^2 = 1.0e^{-4}$</td>
</tr>
<tr>
<td>Yield realisation distribution</td>
<td>$e_t \sim N(\bar{e}, \sigma_e^2)$</td>
</tr>
<tr>
<td>Initial risky asset price level</td>
<td>$p_0 = 0.1$</td>
</tr>
<tr>
<td>x_n admissible interval</td>
<td>$x_{n,t} \in [0.01, 0.99], \forall n \in N, \forall t$</td>
</tr>
</tbody>
</table>

Table: Parameters and initial conditions (1)
Figure: Evolution of wealth-share for the least-risk-averse trader. Single-survivor.
Simulation results - survival patterns (cont’d)

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial population size</td>
<td>$N = 200$</td>
</tr>
<tr>
<td>Number of risky assets</td>
<td>$L = 1$</td>
</tr>
<tr>
<td>Static population</td>
<td>true</td>
</tr>
<tr>
<td>Riskless rate of return</td>
<td>$r_f = 0.02$</td>
</tr>
<tr>
<td>γ distribution</td>
<td>$\gamma_n \sim \mathcal{U}(100.0, 1000.0)$</td>
</tr>
<tr>
<td>λ distribution</td>
<td>$\lambda_n = 0.1$, $\forall n \in \mathcal{N}$</td>
</tr>
<tr>
<td>d distribution</td>
<td>$d_n = 1.0$, $\forall n \in \mathcal{N}$</td>
</tr>
<tr>
<td>Initial wealth endowment</td>
<td>$W_{n,0} = 50.0$, $\forall n \in \mathcal{N}$</td>
</tr>
<tr>
<td>Yield mean</td>
<td>$\bar{e} = 0.04$</td>
</tr>
<tr>
<td>Yield variance</td>
<td>$\sigma^2_e = 1.0e^{-4}$</td>
</tr>
<tr>
<td>Yield realisation distribution</td>
<td>$e_t \sim \mathcal{N}(\bar{e}, \sigma^2_e)$</td>
</tr>
<tr>
<td>Initial risky asset price level</td>
<td>$p_0 = 0.1$</td>
</tr>
<tr>
<td>x_n admissible interval</td>
<td>$x_{n,t} \in [0.01, 0.99]$, $\forall n \in \mathcal{N}, \forall t$</td>
</tr>
</tbody>
</table>

Table: Parameters and initial conditions (2)
Figure: Evolution of wealth-share for the least-risk-averse trader. Single-survivor.
Table: Parameters and initial conditions (3)

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial population size</td>
<td>$N = 200$</td>
</tr>
<tr>
<td>Number of risky assets</td>
<td>$L = 1$</td>
</tr>
<tr>
<td>Static population</td>
<td>true</td>
</tr>
<tr>
<td>Riskless rate of return</td>
<td>$r_f = 0.02$</td>
</tr>
<tr>
<td>γ distribution</td>
<td>$\gamma_n \sim U(1.0, 1000.0)$</td>
</tr>
<tr>
<td>λ distribution</td>
<td>$\lambda_n = 0.01$, $\forall n \in \mathcal{N}$</td>
</tr>
<tr>
<td>d distribution</td>
<td>$d_n = 1.0$, $\forall n \in \mathcal{N}$</td>
</tr>
<tr>
<td>Initial wealth endowment</td>
<td>$W_{n,0} = 50.0$, $\forall n \in \mathcal{N}$</td>
</tr>
<tr>
<td>Yield mean</td>
<td>$\bar{e} = 0.04$</td>
</tr>
<tr>
<td>Yield variance</td>
<td>$\sigma_e^2 = 1.0e^{-4}$</td>
</tr>
<tr>
<td>Yield realisation distribution</td>
<td>$e_t \sim \mathcal{N}(\bar{e}, \sigma_e^2)$</td>
</tr>
<tr>
<td>Initial risky asset price level</td>
<td>$p_0 = 0.1$</td>
</tr>
<tr>
<td>x_n admissible interval</td>
<td>$x_{n,t} \in [0.01, 0.99]$, $\forall n \in \mathcal{N}$, $\forall t$</td>
</tr>
</tbody>
</table>
Simulation results - survival patterns (cont’d)

Figure: Multiple-survivor equilibrium. Evolution of wealth-shares.
Heterogeneity in the risk-aversion coefficient, within the stability domain of the system, triggers a wealth-driven selection mechanism.

- For a short memory-span (large λ), the least risk-averse trader survives and dominates the economy;
- For a long memory-span (small λ), multiple traders, still low-risk averse, survive and display identical investment decisions.

Out of the stability domain of the system (i.e. for large enough λ, following Anufriev et al. 2006) selection does not occur: individual wealth-shares keep fluctuating indefinitely.
Heterogeneity in the risk-aversion coefficient, within the stability domain of the system, triggers a wealth-driven selection mechanism.

- For a short memory-span (large λ), the least risk-averse trader survives and dominates the economy;
- For a long memory-span (small λ), multiple traders, still low-risk averse, survive and display identical investment decisions.

Out of the stability domain of the system (i.e. for large enough λ, following Anufriev et al. 2006) selection does not occur: individual wealth-shares keep fluctuating indefinitely.
Heterogeneity in the risk-aversion coefficient, within the stability domain of the system, triggers a wealth-driven selection mechanism.

- For a short memory-span (large λ), the least risk-averse trader survives and dominates the economy;
- For a long memory-span (small λ), multiple traders, still low-risk averse, survive and display identical investment decisions.

Out of the stability domain of the system (i.e. for large enough λ, following Anufriev et al. 2006) selection does not occur: individual wealth-shares keep fluctuating indefinitely.
Simulation results: price dynamics

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial population size</td>
<td>$N = 1000$</td>
</tr>
<tr>
<td>Number of risky assets</td>
<td>$L = 1$</td>
</tr>
<tr>
<td>Static population</td>
<td>true</td>
</tr>
<tr>
<td>Riskless rate of return</td>
<td>$r_f = 0.02$</td>
</tr>
<tr>
<td>γ distribution</td>
<td>$\gamma_n \sim U(1.0, 500.0)$</td>
</tr>
<tr>
<td>λ distribution</td>
<td>$\lambda_n = 0.0036$, $\forall n \in \mathcal{N}$</td>
</tr>
<tr>
<td>d distribution</td>
<td>$d_n = 1.0$, $\forall n \in \mathcal{N}$</td>
</tr>
<tr>
<td>Initial wealth endowment</td>
<td>$W_{n,0} = 50.0$, $\forall n \in \mathcal{N}$</td>
</tr>
<tr>
<td>Yield mean</td>
<td>$\bar{e} = 0.04$</td>
</tr>
<tr>
<td>Yield variance</td>
<td>$\sigma^2_e = 1.0e^{-4}$</td>
</tr>
<tr>
<td>Yield realisation distribution</td>
<td>$e_t \sim \mathcal{N}(\bar{e}, \sigma^2_e)$</td>
</tr>
<tr>
<td>Initial risky asset price level</td>
<td>$p_0 = 0.1$</td>
</tr>
<tr>
<td>x_n admissible interval</td>
<td>$x_{n,t} \in [0.01, 0.99]$, $\forall n \in \mathcal{N}$, $\forall t$</td>
</tr>
</tbody>
</table>

Table: Parameters and initial conditions (4)
Figure: Price dynamics. Smooth and monotone convergence to equilibrium.
Figure: Price dynamics. Emergence of a bubble-and-bust cycle. $\lambda_n = 0.00365$
Simulation results: price dynamics (cont’d)

Figure: Price dynamics. Emergence of multiple bubble-and-bust cycles. $\lambda_n = 0.155$
Simulation results: price dynamics (cont’d)

Figure: Price dynamics. No convergence to an equilibrium value. $\lambda_n = 0.16$
The emergent properties observed in a trend-chasers-only setting maintain robustness with respect to the introduction of fundamentalist and trend-contrarian traders in the economy.

- Fundamentalists are expected to stabilise the price as they act against chartists whenever current price deviates from its fundamental value;
- Contrarians shall counteract the attempt made by trend-chasers to exacerbate the price trend by acting in a symmetrical fashion.

We differentiate the d parameter in order to model a population largely composed of quasi-fundamentalists and well balanced crowds of trend-chasers and contrarians.
The emergent properties observed in a trend-chasers-only setting maintain robustness with respect to the introduction of fundamentalist and trend-contrarian traders in the economy.

- **Fundamentalists** are expected to stabilise the price as they act against chartists whenever current price deviates from its fundamental value;
- **Contrarians** shall counteract the attempt made by trend-chasers to exacerbate the price trend by acting in a symmetrical fashion.

We differentiate the d parameter in order to model a population largely composed of quasi-fundamentalists and well balanced crowds of trend-chasers and contrarians.
The emergent properties observed in a trend-chasers-only setting maintain robustness with respect to the introduction of fundamentalist and trend-contrarian traders in the economy.

- Fundamentalists are expected to stabilise the price as they act against chartists whenever current price deviates from its fundamental value;
- Contrarians shall counteract the attempt made by trend-chasers to exacerbate the price trend by acting in a symmetrical fashion.

We differentiate the d parameter in order to model a population largely composed of quasi-fundamentalists and well balanced crowds of trend-chasers and contrarians.
The emergent properties observed in a trend-chasers-only setting maintain robustness with respect to the introduction of fundamentalist and trend-contrarian traders in the economy.

- Fundamentalists are expected to stabilise the price as they act against chartists whenever current price deviates from its fundamental value;
- Contrarians shall counteract the attempt made by trend-chasers to exacerbate the price trend by acting in a symmetrical fashion.

We differentiate the d parameter in order to model a population largely composed of quasi-fundamentalists and well balanced crowds of trend-chasers and contrarians.
We now shift the analysis to the transitional price dynamics:

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial population size</td>
<td>$N = 1000$</td>
</tr>
<tr>
<td>Number of risky assets</td>
<td>$L = 1$</td>
</tr>
<tr>
<td>Static population</td>
<td>true</td>
</tr>
<tr>
<td>Riskless rate of return</td>
<td>$r_f = 0.02$</td>
</tr>
<tr>
<td>γ distribution</td>
<td>$\gamma_n \sim \mathcal{U}(1.0, 500.0)$</td>
</tr>
<tr>
<td>λ distribution</td>
<td>$\lambda_n = 0.1$, $\forall n \in \mathcal{N}$</td>
</tr>
<tr>
<td>d distribution</td>
<td>$d_n \sim \mathcal{N}(0, 1)$</td>
</tr>
<tr>
<td>Initial wealth endowment</td>
<td>$W_{n,0} = 50.0$, $\forall n \in \mathcal{N}$</td>
</tr>
<tr>
<td>Yield mean</td>
<td>$\bar{\epsilon} = 0.04$</td>
</tr>
<tr>
<td>Yield variance</td>
<td>$\sigma_e^2 = 1.0\text{e}-4$</td>
</tr>
<tr>
<td>Yield realisation distribution</td>
<td>$e_t \sim \mathcal{N}(\bar{\epsilon}, \sigma_e^2)$</td>
</tr>
<tr>
<td>Initial risky asset price level</td>
<td>$p_0 = 0.1$</td>
</tr>
<tr>
<td>x_n admissible interval</td>
<td>$x_{n,t} \in [0.01, 0.99]$, $\forall n \in \mathcal{N}$, $\forall t$</td>
</tr>
</tbody>
</table>

Table: Parameters and initial conditions (5)
Simulation results: price dynamics (cont’d)

Figure: Price dynamics. Fundamentalists vs. chartists.
Simulation results: price dynamics (cont’d)

![Price dynamics](image)

Figure: Price dynamics. Fundamentalists vs. chartists. $\gamma_n \sim \mathcal{U}(1.0, 1000.0)$
Simulation results: micro-failure

Figure: Price dynamics. Micro-failure striking every $\tau = 15$ periods.
Concluding remarks

1. Analysis of individual wealth-shares
 - strong market selection mechanism
 - single- and multiple-survivor equilibria
 - riskier investment functions globally dominate

2. Analysis of transitional price dynamics
 - emergence of bubble-and-bust cycles
 - robust to the introduction of fundamentalist and trend-contrarian

Our framework can be extended in a number of directions:
 - multiple risky assets
 - dynamic population
 - more realistic traders’ behaviour (prospect theory, herding) and learning (genetic algorithms, classifier systems)
Concluding remarks

1. Analysis of individual wealth-shares
 - strong market selection mechanism
 - single- and multiple-survivor equilibria
 - riskier investment functions globally dominate

2. Analysis of transitional price dynamics
 - emergence of bubble-and-bust cycles
 - robust to the introduction of fundamentalist and trend-contrarian

Our framework can be extended in a number of directions:
- multiple risky assets
- dynamic population
- more realistic traders’ behaviour (prospect theory, herding) and learning (genetic algorithms, classifier systems)
Concluding remarks

1. Analysis of individual wealth-shares
 - strong market selection mechanism
 - single- and multiple-survivor equilibria
 - riskier investment functions globally dominate

2. Analysis of transitional price dynamics
 - emergence of bubble-and-bust cycles
 - robust to the introduction of fundamentalist and trend-contrarian

Our framework can be extended in a number of directions:

- multiple risky assets
- dynamic population
- more realistic traders’ behaviour (prospect theory, herding) and learning (genetic algorithms, classifier systems)
Selected references

