An agent-based model of intra-day financial markets dynamics

Jacopo Staccioli†

Mauro Napoletano‡

† Institute of Economics - Scuola Superiore Sant’Anna, Pisa
‡ OFCE – Sciences Po, Sophia Antipolis

This version: 30th June 2018
Outline

1. Context and motivation
2. Stylised facts
3. The model
4. Simulations
5. Concluding remarks
during recent years, the availability of advanced technology has been substantially reducing the latency required to operate on financial markets, fostering market activity at increasingly higher frequencies

Cont (2011) time to execution dropped 25-fold between 2000 and 2010

Carrion (2013) 68.3% of NASDAQ dollar turnover attributable to HFT

Aldridge (2013) the majority of HFTs delivered positive returns in 2008, whereas 70% of LFTs lost money

high-frequency traders
- high # of trades per day
- low average gain per trade
- low overnight inventories

pros? cons?
- market quality
- volatility
- flash-crash
Stylised facts

low- or cross-frequency
- properties of returns
- properties of volumes

high-frequency
- properties of timing and order-flow

agent-based models
- no model has yet addressed the high-frequency set of stylised facts
- difficulty in mapping simulation time into calendar time
some of the stylised facts have been already (singularly) investigated and linked to patterns of information diffusion

our proposal

- parsimonious financial agent-based model
- intra-day financial dynamics
- no role for information diffusion
- most of the stylised facts *jointly* emerge from the endogenous interaction of heterogeneous traders
Outline

1. Context and motivation
2. Stylised facts
3. The model
4. Simulations
5. Concluding remarks
SF1 leptokurtosis unconditional distribution displays heavier tail w.r.t. Gaussian distribution

SF2 no linear autocorrelation positive autocorr. quickly fading away

SF3 volatility clustering positive autocorr. of absolute/squared value slowly fading away

SF4 leverage effect volatility is higher during price drops than during price surges \rightarrow negative correlation between volatility (absolute returns) and returns
SF5 # price changes per day 10,000+ for blue-chips in liquid markets

SF6 autocorrelation of durations time intervals between subsequent trades are positively autocorrelated

SF7 fat-tailed durations distribution of durations displays a heavier tail w.r.t. exponential distribution

SF8 order-flow clustering buy orders tend to follow buy orders and sell orders tend to follow sell orders
SF9 Volumes Autocorrelation quantities exchanged in successive trades exhibit positive autocorrelation

SF10 Volume/Volatility Correlation (self-explanatory)

SF11 U-shaped Activity volumes peak during early morning and late afternoon
1. Context and motivation

2. Stylised facts

3. The model

4. Simulations

5. Concluding remarks
Ingredients

- order-driven financial market
 - price-time priority
- single long-lived security
- no dividend
- no fundamental news
- N heterogeneous agents
 - fundamentalists mean-reverters
 - chartists trend-followers and contrarians
- no strategy switching

- strict global schedule \implies EURONEXT
- endogenous participation based on past volatility
- automatic order cancellation
Trader behaviour

\[
\hat{r}_{i,t+h}^F = w_i^F \cdot \log \left(\frac{p_{t+h}^F}{p_t} \right) + \varepsilon_t \quad \text{(fundamentalist)}
\]

\[
\hat{r}_{i,t+h}^C = w_i^C \cdot \log \left(\frac{p_t}{p_{t-h}} \right) + \varepsilon_t \quad \text{(chartist)}
\]

- fundamentalist sensitivity \(w_i^F \sim |\mathcal{N}(0, \sigma_F^2)| \)
- chartist sensitivity \(w_i^C \sim \mathcal{N}(\mu_C, \sigma_C^2) \)
- fundamental price \(p^F > 0 \)
- memory/horizon \(h \in \mathbb{N}_+ \)
- common i.i.d. noise \(\varepsilon_t \sim \mathcal{N}(0, \sigma_\varepsilon^2) \)
Limit order

definition
a limit order submitted by trader i at time t is a triple

$$\ell_{i,t} = \{\text{price, quantity, validity}\}$$

$$= \{\text{round}(p_t \cdot \exp(\hat{r}_{i,t+h}), \text{tick}), \text{sgn}(\hat{r}_{i,t+h}), t + h\}$$

- $\text{round}(\cdot)$ is the rounding function
- tick is the minimum price increment/decrement
- $\text{sgn}(\cdot)$ is the sign function

- no feedback from current time of the day
Order cancellation

Automatic cancellation

A stored order $\ell_{i,t}$ is automatically deleted from the book

- at its expiration time $t + h$
- if i submits a new order with different sign (side)
- if i submits a new order and $\ell_{i,t}$ is deemed unfavourable
 - new buy order at lower price
 - new sell order at higher price
Trader participation

uniform activation

- exactly one trader is activated at each time step, randomly selected from the population N

endogenous activation

- trader i is active at time t if

 $$|r_{\tau}| > \delta_{i,t} \sim |\mathcal{N}(0, \sigma_\delta^2)|$$

 where $\tau < t$ denotes the last time a trade occurred

- if $|r_{\tau}| < \delta_{i,t}, \forall i = 1, \ldots, N$ then uniform activation with probability $\phi > 0$
Timing (Euronext)

<table>
<thead>
<tr>
<th>time</th>
<th>phase</th>
<th>duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>from 7:15am to 9:00am</td>
<td>pre-opening</td>
<td>6,300 s</td>
</tr>
<tr>
<td>at 9:00am</td>
<td>opening auction</td>
<td>—</td>
</tr>
<tr>
<td>from 9:00am to 5:30pm</td>
<td>main trading session</td>
<td>30,600 s</td>
</tr>
<tr>
<td>from 5:30pm to 5:35pm</td>
<td>pre-closing</td>
<td>300 s</td>
</tr>
<tr>
<td>at 5:35pm</td>
<td>closing auction</td>
<td>—</td>
</tr>
<tr>
<td>10 hours, 20 minutes</td>
<td>—</td>
<td>37,200 s</td>
</tr>
</tbody>
</table>

1 simulation step \iff 1 calendar second
Workflow

trader i at time t

- active
 - automatic cancellation
 - accumulation phase
 - inactive

- form expectation
 - submit limit order
 - \exists crossing order
 - trade occurs
 - \forall crossing order
 - quantity exchanged
 - (new) price announced

- \forall crossing order
 - store on order book

An agent-based model of intra-day financial markets dynamics
Jacopo Staccioli

30th June 2018
Outline

1. Context and motivation
2. Stylised facts
3. The model
4. Simulations
5. Concluding remarks
we simulate the model numerically under three scenarios

NT : only noise traders

FC : fundamentalists and chartists with uniform participation

EA : fundamentalists and chartists with endogenous participation

<table>
<thead>
<tr>
<th>parameter</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1,000</td>
</tr>
<tr>
<td>p^F</td>
<td>100</td>
</tr>
<tr>
<td>tick</td>
<td>0.001</td>
</tr>
<tr>
<td>h</td>
<td>1,000</td>
</tr>
<tr>
<td>p_0</td>
<td>p^F</td>
</tr>
</tbody>
</table>

at the beginning of the simulation all chartists are provided a history of past prices between $t = -h$ and $t = 0$ that evolves (backwards) as a pure random walk

- irregular time series are pooled into minute-by-minute data
- results are averaged across 100 Montecarlo simulations
NT scenario

avg. # of trades = 14,958 \(\kappa \approx 3.17 \)
Empirical quantiles
ACF Abs. Returns
ACF Durations
ACF Returns
ACF Volume

Time
Price

Lag
ACF Durations

0
20
40
60

Lag
Empirical quantile

Theoretical quantiles

Lag
ACF Volume

Lag
ACF Order-flow

Lag
ACF Abs. Returns

Time
Return

ACF Returns

−0.05
0.1
0.3

Lag
ACF Abs. Returns

−0.0015
0.0010

Lag
ACF Order-flow

−0.00010
0.00015

Lag
Leverage effect

avg. # of trades = 14,953 κ ≈ 14.5

Sant'Anna
Scuola Universitaria Superiore Pisa

An agent-based model of intra-day financial markets dynamics
Jacopo Staccioli
30th June 2018
EA scenario

An agent-based model of intra-day financial markets dynamics

Jacopo Staccioli

avg. # of trades = 9,991

κ ≈ 13.96
Stylised facts

<table>
<thead>
<tr>
<th>stylised fact</th>
<th>scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF1 leptokurtic returns</td>
<td>NT FC EA</td>
</tr>
<tr>
<td>SF2 no linear autocorr.</td>
<td>NT FC EA</td>
</tr>
<tr>
<td>SF3 volatility clustering</td>
<td>NT FC EA</td>
</tr>
<tr>
<td>SF4 leverage effect</td>
<td>NT FC EA</td>
</tr>
<tr>
<td>SF5 # price changes</td>
<td>NT FC EA</td>
</tr>
<tr>
<td>SF6 autocorr. durations</td>
<td>NT FC EA</td>
</tr>
<tr>
<td>SF7 fat-tailed durations</td>
<td>NT FC EA</td>
</tr>
<tr>
<td>SF8 order-flow clustering</td>
<td>NT FC EA</td>
</tr>
<tr>
<td>SF9 autocorr. volumes</td>
<td>NT FC EA</td>
</tr>
<tr>
<td>SF10 volume/volatility corr.</td>
<td>NT FC EA</td>
</tr>
<tr>
<td>SF11 U-shaped activity</td>
<td>NT FC EA</td>
</tr>
</tbody>
</table>
Outline

1. Context and motivation
2. Stylised facts
3. The model
4. Simulations
5. Concluding remarks
Recap

Assumptions
- No information diffusion – everything is common knowledge
- Trading emerges as the consequence of differing (stable) beliefs
 - Fundamentalists vs. chartists
- Strict timing and microstructure from Euronext
- Endogenous participation based on past volatility

Results

<table>
<thead>
<tr>
<th>NT</th>
<th>Slight dependence in returns quickly fading, # trades/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC</td>
<td>$[NT] \oplus$ leptokurtosis and volatility clustering</td>
</tr>
<tr>
<td>EA</td>
<td>$[FC] \oplus$ dependence in timing, volumes, and order-flow</td>
</tr>
</tbody>
</table>
Extensible extensions

- time feedback in trading strategies
- budget constraint/leverage requirement
- more complex chartist specification \Rightarrow leverage effect
- calibration of model parameters \Rightarrow policy experiments

\Rightarrow U-shaped seasonality
Thank you very much!

j.staccioli<at>santannapisa.it

Dolfins

...and props to the European Project 640772 – DOLFINS – H2020-FETPROACT-2014 for financial support
NT scenario

<table>
<thead>
<tr>
<th>param.</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varepsilon_t)</td>
<td>(\mathcal{N}(0,5e-5))</td>
</tr>
<tr>
<td>(w_i^F)</td>
<td>0</td>
</tr>
<tr>
<td>(w_i^C)</td>
<td>0</td>
</tr>
<tr>
<td>(\delta_t)</td>
<td>(+\infty)</td>
</tr>
<tr>
<td>(\phi)</td>
<td>1</td>
</tr>
</tbody>
</table>
An agent-based model of intra-day financial markets dynamics

Jacopo Staccioli

30th June 2018

<table>
<thead>
<tr>
<th>param.</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϵ_t</td>
<td>$\mathcal{N}(0, 5e^{-5})$</td>
</tr>
<tr>
<td>w_i^F</td>
<td>$</td>
</tr>
<tr>
<td>w_i^C</td>
<td>$\mathcal{N}(0.01, 0.1)$</td>
</tr>
<tr>
<td>δ_t</td>
<td>$+\infty$</td>
</tr>
<tr>
<td>ϕ</td>
<td>1</td>
</tr>
</tbody>
</table>
EA scenario

<table>
<thead>
<tr>
<th>param.</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε_t</td>
<td>$\mathcal{N}(0, 5e-5)$</td>
</tr>
<tr>
<td>w^F_i</td>
<td>$</td>
</tr>
<tr>
<td>w^C_i</td>
<td>$\mathcal{N}(0.01, 0.1)$</td>
</tr>
<tr>
<td>δ_t</td>
<td>$</td>
</tr>
<tr>
<td>ϕ</td>
<td>$1/3$</td>
</tr>
</tbody>
</table>
Figure: Price series (left) and return series (right) for a typical trading day
Figure: Autocorrelation of returns (left) and of absolute returns (right)
Figure: Autocorrelation of durations (left) and Q-Q of their distribution (right)
Figure: Autocorrelation of volumes (left) and of order-flow (right)
Figure: Volume/volatility correlation (left) and leverage effect (right)
Figure: Price series (left) and return series (right) for a typical trading day
Figure: Autocorrelation of returns (left) and of absolute returns (right)
FC scenario (iii)

Figure: Autocorrelation of durations (left) and Q-Q of their distribution (right)
Figure: Autocorrelation of volumes (left) and of order-flow (right)
Figure: Volume/volatility correlation (left) and leverage effect (right)
Figure: Price series (left) and return series (right) for a typical trading day
Figure: Autocorrelation of returns (left) and of absolute returns (right)
Figure: Autocorrelation of durations (left) and Q-Q of their distribution (right)
Figure: Autocorrelation of volumes (left) and of order-flow (right)
Figure: Volume/volatility correlation (left) and leverage effect (right)